
RackHD Documentation
Release 2.0

Dell EMC

Apr 27, 2018





Contents

1 Contents 3
1.1 RackHD Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Technical Inside . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 RackHD Support Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4 Quick Start Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5 Running RackHD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.6 RackHD API, Data Model, Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
1.7 Redfish API, Data Model, Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
1.8 Server Workflow Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
1.9 Switch Workflow Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
1.10 Extended Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
1.11 RackHD Web-UI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
1.12 Development Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
1.13 Hands-On vLab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
1.14 Customer Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
1.15 Contributing to RackHD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

i



ii



RackHD Documentation, Release 2.0

VIDEO: Introduction to RackHD

RackHD is a technology stack for enabling automated hardware management and orchestration through cohesive
APIs. It serves as an abstraction layer between other management layers and the underlying, vendor-specific physical
hardware.

Developers can use the RackHD APIs to incorporate RackHD functionality into a larger orchestration system or to
create a user interface for managing hardware services regardless of the underlying hardware in place.

The project is housed at https://github.com/RackHD/ and available under the Apache 2.0 license (or compatible subli-
censes for library dependencies). This RackHD documentation is hosted at http://rackhd.readthedocs.io.

Contents 1

https://www.youtube.com/embed/cCiXtROSt8U
https://github.com/RackHD/
http://rackhd.readthedocs.io


RackHD Documentation, Release 2.0

2 Contents



CHAPTER 1

Contents

1.1 RackHD Overview

Table of Contents

• RackHD Overview

– Vision

– Goals

– The RackHD Project

– What RackHD Does Well

– What RackHD Doesn’t Do

– Comparison with Other Projects

– Related Projects

RackHD serves as an abstraction layer between other M&O layers and the underlying physical hardware. Developers
can use the RackHD API to create a user interface that serves as single point of access for managing hardware services
regardless of the specific hardware in place.

RackHD has the ability to discover the existing hardware resources, catalog each component, and retrieve detailed
telemetry information from each resource. The retrieved information can then be used to perform low-level hardware
management tasks, such as BIOS configuration, OS installation, and firmware management.

RackHD sits between the other M&O layers and the underlying physical hardware devices. User interfaces at the
higher M&O layers can request hardware services from RackHD. RackHD handles the details of connecting to and
managing the hardware devices.

The RackHD API allows you to automate a great range of management tasks, including:

• Install, configure, and monitor bare metal hardware (compute servers, PDUs, DAEs, network switches).

3



RackHD Documentation, Release 2.0

• Provision and erase server OSes.

• Install and upgrade firmware.

• Monitor bare metal hardware through out-of-band management interfaces.

• Provide data feeds for alerts and raw telemetry from hardware.

1.1.1 Vision

Feature Description
Discov-
ery and
Cataloging

Discovers the compute, network, and storage resources and catalogs their attributes and capabilities.

Teleme-
try and
Genealogy

Telemetry data includes genealogical details, such as hardware, revisions, serial numbers, and date
of manufacture

Device
Manage-
ment

Powers devices on and off. Manages the firmware, power, OS installation, and base configuration of
the resources.

Configura-
tion

Configures the hardware per application requirements. This can range from the BIOS configuration
on compute devices to the port configurations in a network switch.

Provision-
ing

Provisions a node to support the intended application workflow, for example lays down ESXi from
an image repository. Reprovisions a node to support a different workload, for example changes the
ESXi platform to Bare Metal CentOS.

Firmware
Manage-
ment

Manages all infrastructure firmware versioning.

Logging Log information can be retrieved for particular elements or collated into a single timeline for multiple
elements within the management neighborhood.

Environ-
mental
Monitor-
ing

Aggregates environmental data from hardware resources. The data to monitor is configurable and
can include power information, component status, fan performance, and other information provided
by the resource.

Fault
Detection

Monitors compute and storage devices for both hard and soft faults. Performs suitable responses
based on pre-defined policies.

Analytics
Data

Data generated by environmental and fault monitoring can be provided to analytic tools for analysis,
particularly around predictive failure.

1.1.2 Goals

The primary goals of RackHD are to provide REST APIs and live data feeds to enable automated solutions for man-
aging hardware resources. The technology and architecture are built to provide a platform agnostic solution.

The combination of these services is intended to provide a REST API based service to:

• Install, configure, and monitor bare metal hardware, such as compute servers, power distribution units (PDUs),
direct attached extenders (DAE) for storage, and network switches.

• Provision, erase, and reprovision a compute server’s OS.

• Install and upgrade firmware for qualified hardware.

• Monitor and alert bare metal hardware through out-of-band management interfaces.

4 Chapter 1. Contents



RackHD Documentation, Release 2.0

• Provide RESTful APIs for convenient access to knowledge about both common and vendor-specific hardware.

• Provide pub/sub data feeds for alerts and raw telemetry from hardware.

1.1.3 The RackHD Project

The original motive centered on maximizing the automation of firmware and BIOS updates in the data center, thereby
reducing the extensive manual processes that are still required for these operations.

Existing open source solutions do an admirable job of inventory and bare OS provisioning, but the ability to upgrade
firmware is beyond the technology stacks currently available (i.e. xCat, Cobbler, Razor or Hanlon). By adding an
event-based workflow engine that works in conjunction with classical PXE booting, RackHD makes it possible to
architect different deployment configurations as described in :doc:how_it_works and Deployment Environment.

RackHD extends automation beyond simple PXE booting. It can perform highly customizable tasks on machines, as
is illustrated by the following sequence:

• PXE boot the server

• Interrogate the hardware to determine if it has the correct firmware version

• If needed, flash the firmware to the correct version

• Reboot (mandated by things like BIOS and BMC flashing)

• PXE boot again

• Interrogate the hardware to ensure it has the correct firmware version.

• SCORE!

In effect, RackHD combines open source tools with a declarative, event-based workflow engine. It is similar to Razor
and Hanlon in that it sets up and boots a microkernel that can perform predefined tasks. However, it extends this model
by adding a remote agent that communicates with the workflow engine to dynamically determine the tasks to perform
on the target machine, such as zero out disks, interrogate the PCI bus, or reset the IPMI settings through the hosts
internal KCS channel.

Along with this agent-to-workflow integration, RackHD optimizes the path for interrogating and gathering data. It
leverages existing Linux tools and parses outputs that are sent back and stored as free-form JSON data structures.

The workflow engine was extended to support polling via out-of-band interfaces in order to capture sensor information
and other data that can be retrieved using IPMI. In RackHD these become pollers that periodically capture telemetry
data from the hardware interfaces.

1.1.4 What RackHD Does Well

RackHD is focused on being the lowest level of automation that interrogates agnostic hardware and provisions ma-
chines with operating systems. The API can be used to pass in data through variables in the workflow configuration, so
you can parameterize workflows. Since workflows also have access to all of the SKU information and other catalogs,
they can be authored to react to that information.

The real power of RackHD, therefore, is that you can develop your own workflows and use the REST API to pass
in dynamic configuration details. This allows you to execute a specific sequence of arbitrary tasks that satisfy your
requirements.

When creating your initial workflows, it is recommended that you use the existing workflows in our code repository
to see how different actions can be performed.

1.1. RackHD Overview 5

http://xcat.org
http://cobbler.github.io
https://github.com/puppetlabs/razor-server
https://github.com/csc/Hanlon


RackHD Documentation, Release 2.0

1.1.5 What RackHD Doesn’t Do

RackHD is a comparatively passive system. Workflows do not contain the complex logic for functionality that is
implemented in the layers above hardware management and orchestration. For example, workflows do not provide
scheduling functionality or choose which machines to allocate to particular services.

We document and expose the events around the workflow engine to be utilized, extended, and incorporated into an
infrastructure management system, but we did not take RacKHD itself directly into the infrastructure layer.

1.1.6 Comparison with Other Projects

Comparison to other open source technologies:

Cobbler comparison

• Grand-daddy of open source tools to enable PXE imaging

• Original workhorse of datacenter PXE automation

• XML-RPC interface for automation, no REST interface

• No dynamic events or control for TFTP, DHCP

• Extensive manual and OS level configuration needed to utilize

• One-shot operations - not structured to change personalities (OS installed) on a target machine, or multiple
reboots to support some firmware update needs

• No workflow engine or concept of orchestration with multiple reboots

Razor/Hanlon comparison

• HTTP wrapper around stock open source tools to enable PXE booting (DHCP, TFTP, HTTP)

• Razor and Hanlon extended beyond Cobbler’s concepts to include microkernel to interrogate remote host and
use that information with policies to choose what to PXE boot

• Razor isn’t set to make dynamic responses through TFTP or DHCP where RackHD uses dynamic responses
based on current state for PXE to enable workflows

• Catalog and policy are roughly equivalent to RackHD default/discovery workflow and SKU mechanism, but
oriented on single OS deployment for a piece or type of hardware

• Razor and Hanlon are often focused on hardware inventory to choose and enable OS installation through Razor’s
policy mechanisms.

• No workflow engine or concept of orchestration with multiple reboots

• Tightly bound to and maintained by Puppet

• Forked variant Hanlon used for Chef Metal driver

xCat comparison

• HPC Cluster Centric tool focused on IBM supported hardware

• Firmware update features restricted to IBM/Lenovo proprietary hardware where firmware was made to “one-
shot-update”, not explicitly requiring a reboot

• Has no concept of workflow or sequencing

• Has no obvious mechanism for failure recovery

• Competing with Puppet/Chef/Ansible/cfEngine to own config management story

6 Chapter 1. Contents

https://github.com/csc/Hanlon


RackHD Documentation, Release 2.0

• Extensibility model tied exclusively to Perl code

• REST API is extremely light with focus on CLI management

• Built as a master controller of infrastructure vs an element in the process

1.1.7 Related Projects

• CLI

– Ruby CLI for RackHD

• OpenStack

– Shovel - RackHD coordinator

– Shovel Horizon Plugin

– Shovel API python client

• CloudFoundry/BOSH

– Bosh RackHD CPI

• Docker

– Docker Machine driver for RackHD

• Libraries

– Golang client library to RackHD 1.1 API

1.2 Technical Inside

1.2.1 Theory of Operations

Table of Contents

• Theory of Operations

– Features

* Bare Metal Server Automation with PXE

* Discovery and Geneaology

* Telemetry, Events and Alerting

* Additional Workflows

RackHD enables much of its functionality by providing PXE boot services to machines that will be managed, and
integrating the services providing the protocols used into a workflow engine. RackHD is built to download a micro-
kernel (a small OS) crafted to run tasks in coordination with the workflow engine. The default and most commonly
used microkernel is based on Linux, although WinPE and DOS network-based booting is also possible.

RackHD was born from the realization that our effective automation in computing and improving efficiencies has come
from multiple layers of orchestration, each building on a lower layer. A full-featured API-driven environment that is
effective spawns additional wrappers to combined the lower level pieces into patterns that are at first experimental and
over time become either de facto or concrete standards.

1.2. Technical Inside 7

https://github.com/EMC-CMD/rackhd-cli
https://github.com/keedya/Shovel
https://github.com/keedya/shovel-horizon-plugin
https://github.com/keedya/shovel-api-python-client
https://github.com/cloudfoundry-incubator/bosh-rackhd-cpi-release
https://github.com/emccode/docker-machine-rackhd
https://github.com/emccode/gorackhd


RackHD Documentation, Release 2.0

Application automation services such Heroku or CloudFoundry are service API layers (AWS, Google Cloud Engine,
SoftLayer, OpenStack, and others) that are built overlying infrastructure. Those services, in turn, are often installed,
configured, and managed by automation in the form of software configuration management: Puppet, Chef, Ansible,
etc. To automate data center rollouts, managing racks of machines, etc - these are built on automation to help roll out
software onto servers - Cobbler, Razor, and now RackHD.

The closer you get to hardware, the less automated systems tend to become. Cobbler and SystemImager were main-
stays of early data center management tooling. Razor (or Hanlon, depending on where you’re looking) expanded on
those efforts.

8 Chapter 1. Contents



RackHD Documentation, Release 2.0

RackHD expands the capabilities of hardware management and operations beyond the mainstay features, such as
PXE booting and automated installation of OS and software. It includes active metrics and telemetry, integration and
annotated monitoring of underlying hardware, and firmware updating.

RackHD continues the extension by enabling automation by “playing nicely” with both existing and future potential
systems, providing a consistent means of doing common automation and allowing for the specifics of various hard-
ware vendors. It adds to existing open source efforts by providing a significant step the enablement of converged
infrastructure automation.

Features

Bare Metal Server Automation with PXE

RackHD uses the Preboot Execution Environment (PXE) for booting and controlling servers. PXE is a vendor-
independent mechanism that allows networked computers to be remotely booted and configured. PXE booting requires
that DHCP and TFTP are configured and responding on the network to which the machine is attached.

RackHD uses iPXE as its initial bootloader. iPXE takes advantage of HTTP and permits the dynamic generation of
iPXE scripts – referred to in RackHD as profiles – based on what the server should do when it is PXE booting.

Data center automation is enabled through each server’s Baseboard Motherboard Controller (BMC) embedded on
the server motherboard. Using Intelligent Platform Management Interface (IPMI) to communicate with the BMC,
RackHD can remotely power on, power off, reboot, request a PXE boot, and perform other operations.

Many open source tools, such as Cobbler, Razor, and Hanlon use this kind of mechanism. RackHD goes beyond this
and adds a workflow engine that interacts with these existing protocols and mechanisms to let us create workflows of
tasks, boot scripts, and interactions to achieve our full system automation.

The workflow engine supports RackHD responding to requests to PXE boot, like the above systems, and additionally
provides an API to invoke workflows against one or more nodes. This API is intended to be used and composed into
a larger system to allow RackHD to automate efforts sequences of tasks, and leverage that specifically for bare metal
manangement. For more details on workflows, how to create them, and how to use them, please see Workflows in the
RackHD API, Data Model, Feature.

RackHD includes defaults to automatically create and run workflows when it gets DHCP/PXE requests from a system
it’s never seen previously. This special case is called Discovery.

Discovery and Geneaology

RackHD supports two modes of learning about machines that it manages. We loosely group these as passive and active
discovery.

• Passive discovery is where a user or outside system actively tells RackHD that the system exists. This is enabled
by making a post to the REST interface that RackHD can then add to its data model.

• Active discovery is invoked when a machine attempts to PXE boot on the network that RackHD is monitoring.
As a new machine PXE boots, RackHD retrieves the MAC address of the machine. If the MAC address has not
been recorded, RackHD creates a new record in the data model and then invokes a default workflow. To enable
active discovery, you set the default workflow that will be run when a new machine is identified to one of the
discovery workflows included within the system. The most common is the SKU Discovery workflow.

For an example, the “SKU Discovery” workflow runs through its tasks as follows:

1. It runs a sub-workflow called ‘Discovery’

(a) Discovery is initiated by sending down the iPXE boot loader with a pre-built script to run within iPXE. This
script then chainloads into a new, dynamically rendered iPXE script that interrogates the enabled network

1.2. Technical Inside 9

https://en.m.wikipedia.org/wiki/Preboot_Execution_Environment
http://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol
https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol
http://en.wikipedia.org/wiki/IPXE
https://en.m.wikipedia.org/wiki/Baseboard_management_controller
https://en.m.wikipedia.org/wiki/Intelligent_Platform_Management_Interface
http://cobbler.github.io
https://github.com/puppetlabs/razor-server
https://github.com/csc/Hanlon


RackHD Documentation, Release 2.0

interfaces on the remote machine and reports them back to RackHD. RackHD adds this information to
the machine and lookup records. RackHD then renders an additional iPXE script to be chainloaded that
downloads and runs the microkernel. The microkernel boots up and requests a Node.js “bootstrap” script
from RackHD. RackHD runs the bootstrap program which uses a simple REST API to “ask” what it should
do on the remote host.

(b) The workflow engine, running the discovery workflow, provides a set of tasks to run. These tasks are
matched with parsers in RackHD to understand and store the output. They work together to run Linux
commands that interrogate the hardware from the microkernel running in memory. These commands
include interrogating the machine’s BMC settings through IPMI, the installed PCI cards, the DMI infor-
mation embedded in the BIOS, and others. The resulting information is then stored in JSON format as
“catalogs” in RackHD.

(c) When it’s completed with all the tasks, it tells the microkernel to reboot the machine and sends an internal
event that the basic bootstrapping process is finished

2. The SKU Discovery workflow then performs a workflow task process called “generate-sku” that compares the
catalog data for the node against SKU definition loaded into the system through the REST interface. If the
definitions match, RackHD updates its data model indicating that the node belongs to a SKU. More information
on SKUs, how they’re defined, and how they can be used can be found at SKUs.

3. The task “generate-enclosure” interrogates catalog data for the system serial number and/or IPMI fru devices to
determine whether the node is part of an enclosure (for example, a chassis that aggregates power for multiple
nodes), and updates the relations in the node document if matches are found.

4. The task “create-default-pollers” creates a set of default pollers that periodically monitor the device for system
hardware alerts, built in sensor data, power status, and similar information.

5. The last task (“run-sku-graph”) checks if there are additional workflow hooks defined on the SKU definition
associated with the node, and creates a new workflow dynamically if defined.

You can find the SKU Discovery graph at https://github.com/RackHD/on-taskgraph/blob/master/lib/graphs/
discovery-sku-graph.js, and the simpler “Discovery” graph it uses at https://github.com/RackHD/on-taskgraph/blob/
master/lib/graphs/discovery-graph.js

Notes:

• No workflow is assigned to a PXE-booting system that is already known to RackHD. Instead, the RackHD
system ignores proxy DHCP requests from booting nodes with no active workflow and lets the system continue
to boot as specified by its BIOS or UEFI boot order.

• The discovery workflow can be updated to do additional work or steps for the installation of RackHD, to run
other workflows based on the SKU analysis, or perform other actions based on the logic embedded into the
workflow itself.

• Additional pollers exist and can be configured to capture data through SNMP. The RackHD project is set up to
support additional pollers as plugins that can be configured and run as desired.

Telemetry, Events and Alerting

RackHD leverages its workflow engine to also provide a mechanism to poll and collect data from systems under
management, and convert that into a “live data feed”. The data is cached for API access and published through AMQP,
providing a “live telemetry feed” for information collected on the remote systems.

In addition to this live feed, RackHD includes some rudimentary alerting mechanisms that compare the data collected
by the pollers to regular expressions, and if they match, create an additional event that is published on an “alert”
exchange in AMQP. More information can be found at Pollers in the RackHD API, Data Model, Feature.

10 Chapter 1. Contents

https://github.com/RackHD/on-taskgraph/blob/master/lib/graphs/discovery-sku-graph.js
https://github.com/RackHD/on-taskgraph/blob/master/lib/graphs/discovery-sku-graph.js
https://github.com/RackHD/on-taskgraph/blob/master/lib/graphs/discovery-graph.js
https://github.com/RackHD/on-taskgraph/blob/master/lib/graphs/discovery-graph.js


RackHD Documentation, Release 2.0

RackHD also provides notification on some common tasks and workflow completion. Additional detail can be found
at Northbound Event Notification.

Additional Workflows

Other workflows can be configured and assigned to run on remote systems. For example, OS install can be set to
explicitly power cycle (reboot) a remote node. As the system PXE boots, an installation kernel is sent down and run
instead of the discovery microkernel.

The remote network-based OS installation process that runs from Linux OS distributions typically runs with a config-
uration file - debseed or kickstart. The monorail engine provides a means to render these configuration files through
templates, with the values derived from the workflow itself - either as defaults built into the workflow, discovered data
in the system (such as data within the catalogs found during machine interrogation), or even passed in as variables
when the workflow was invoked by an end-user or external automation system. These “templates” can be accessed
through the Monorail’s engine REST API - created, updated, or removed - to support a wide variety of responses and
capabilities.

Workflows can also be chained together and the workflow engine includes simple logic (as demonstrated in the dis-
covery workflow) to perform arbitrarily complex tasks based on the workflow definition. The workflow definitions
themselves are accessible through the Monorail engine’s REST API as a “graph” of “tasks”.

For more detailed information on graphs, see the section on Workflows under our RackHD API, Data Model, Feature.

Workflows and tasks are fully declarative with a JSON format. A workflow task is a unit of work decorated with data
and logic that allows it to be included and run within a workflow. Tasks are also mapped up “Jobs”, which is the
Node.js code that RackHD runs from data included in the task declaration. Tasks can be defined to do wide-ranging
operations, such as bootstrap a server node into a Linux microkernel, parse data for matches against a rule, and more.

For more detailed information on tasks, see the section on Workflow Tasks under our RackHD API, Data Model,
Feature.

1.2.2 Software Architecture

Table of Contents

• Software Architecture

– Major Components

* ISC DHCP

* on-dhcp-proxy

* on-tftp

* on-http

* on-syslog

* on-taskgraph

RackHD provides a REST API for the automation using an underlying workflow engine (named the “monorail engine”
after a popular Seattle coffee shop: http://www.yelp.com/biz/monorail-espresso-seattle).

RackHD is also providing an implementation of the Redfish specification as an additional REST API to provide a
common data model for representing bare metal hardware, and provides this as an aggregate for multiple back-end
servers and systems.

1.2. Technical Inside 11

http://www.yelp.com/biz/monorail-espresso-seattle
http://redfish.dmtf.org


RackHD Documentation, Release 2.0

The workflow engine operates with and coordinates with services to respond to protocols commonly used in hardware
management. RackHD is structured with several independent processes, typically focused on specific function or
protocol so that we can scaling or distribute them independently, using a pattern of Microservices.

RackHD communicates between these using message passing over AMQP and stores data in an included persistence
store. MongoDB is the default, and configurable communications layers and persistence layers are in progress.

12 Chapter 1. Contents

https://en.wikipedia.org/wiki/Microservices


RackHD Documentation, Release 2.0

Major Components

ISC DHCP

This DHCP server provides IP addresses dynamically using the DHCP protocol. It is a critical component of a standard
Preboot Execution Environment (PXE) process.

1.2. Technical Inside 13

https://en.wikipedia.org/wiki/Preboot_Execution_Environment


RackHD Documentation, Release 2.0

on-dhcp-proxy

The DHCP protocol supports getting additional data specifically for the PXE process from a secondary service that
also responds on the same network as the DHCP server. The DHCP proxy service provides that information, generated
dynamically from the workflow engine.

on-tftp

TFTP is the common protocol used to initiate a PXE process. on-tftp is tied into the workflow engine to be able to
dynamically provide responses based on the state of the workflow engine and to provide events to the workflow engine
when servers request files via TFTP.

on-http

on-http provides both the REST interface to the workflow engine and data model APIs as well as a communication
channel and potential proxy for hosting and serving files to support dynamic PXE responses. RackHD commonly uses
iPXE as its initial bootloader, loading remaining files for PXE booting via HTTP and using that communications path
as a mechanism to control what a remote server will do when rebooting.

on-syslog

on-syslog is a syslog receiver endpoint provideing annotated and structured logging from the hosts under management.
It channels all syslog data sent to the host into the workflow engine.

on-taskgraph

on-taskgraph is the workflow engine, driving actions on remote systems and processing workflows for machines being
managed. Additionally, the workflow engine provides the engine for polling and monitoring.

on-taskgraph also serves as the communication channel for the microkernel to support deep hardware interrogation,
firmware updates, and other actions that can only be invoked directly on the hardware (not through an out of band
management channel).

14 Chapter 1. Contents



RackHD Documentation, Release 2.0

1.2.3 RackHD Glossary

RackHD
Term

Definition

Bare
Metal

The state of a compute node, storage node, or switch where there is no OS, Hypervisor, or Application
deployed.

Bare
Metal
OS

An operating system that runs directly on top of the hardware/firmware, unlike an OS running in a virtual
machine.

BMC Baseboard Management Controller. A BMC is a specialized microcontroller embedded on the moth-
erboard of a system that manages the interface between system management software and the physical
hardware on the system.

Chas-
sis

The structural framework that accepts some number of fixed form factor nodes, containing a midplane,
dedicated power, fans, and network interface. A chassis may also contain a management card that is
responsible for chassis management.

Ele-
ment

A generic term used to define a physical resource that can be managed or provisioned. Examples include:
CPU Element, NVRAM Element, Storage Element.

En-
clo-
sure

The structural framework that contains a node. The enclosure can contain a single compute node –
sometimes referred to as blades when they plug into a multi-bay chassis or a server when it is rack
mountable.

Ge-
neal-
ogy

Refers to the make-up and relational information of the hardware components of a given rack, node, or
element; it also includes attributes such as port count, speed, capacity, FRU data, FW versions, etc.

IPMI Intelligent Platform Management Interface - A standard system interface for out-of-band management of
computer systems and monitoring of their operation.

KCS Keyboard Controller Style. A communication channel between the CPU and BMC.
Node A generic term used to describe an enclosure that includes compute, storage, or network resources. A

node can either be rack mountable, in the case of a server, or it can have a specific form factor so it only
fits in a specific enclosure.

OOB Out of Band - refers to the use of a dedicated channel to perform management. The OOB network does
not interfere with the data path, thereby minimizing any impact to system performance on the data plane.

Rack A physical entity that provides power and accepts rack-mountable hardware. Racks can contain TOR
switches, Chassis, servers, cooling, etc.

REST Representational State Transfer - REST is an architectural style consisting of a coordinated set of architec-
tural constraints applied to components, connectors, and data elements, within a distributed hypermedia
system.

SDN Software Defined Networking - An approach to computer networking that allows network administrators
to manage network services through abstraction of higher-level functionality. This is done by decoupling
the network control plane from the data plane.

SDS Software-defined storage (SDS) allows for management of data storage independent of the underlying
hardware. Typically this involves the use of storage virtualization to separate the storage hardware from
the management software.

SLA As used in a Converged Infrastructure, refers to a specific set of Service-level Objective (SLO) targets
that collectively define a level of service required to support an application or infrastructure.

SLO A set of specific targets or metrics that can be used to prescribe a level of service or to measure the
effectiveness of a Converged Infrastructure in delivering to that level of service.

VM Virtual Machine - the emulation of a computer system providing compute, network, and storage resources.
VMs run within a hypervisor that manages the resource assignments

1.2. Technical Inside 15



RackHD Documentation, Release 2.0

1.3 RackHD Support Matrix

Table of Contents

• RackHD Support Matrix

– Sever Compatibility List (Qualified by RackHD team)

– Switch Compatibility List (Qualified by RackHD team)

– iPDU/SmartPDU Compatibility List (Qualified by RackHD team)

– RackHD OS Installation Support List (Qualified by RackHD team)

1.3.1 Sever Compatibility List (Qualified by RackHD team)

Vendor Type T1: Dis-
covery. . .

T2: OS In-
stallation

T3: FW
Update

T4: RAID Con-
figuration

T4: Secure
Erase

Dell DSS 900 Yes Yes No No No
. . . PowerEdge R640

(14 gen)
Yes Yes Yes Yes Yes

. . . PowerEdge R630
(13 gen)

Yes Yes Yes Yes Yes

. . . PowerEdge R730
(13 gen)

Yes Yes Yes Yes Yes

. . . PowerEdge
R730xd (13
gen)

Yes Yes Yes Yes Yes

. . . PowerEdge C6320
(13 gen)

Yes Yes Yes Yes Yes

Cisco UCS C220 M3 Yes Yes No No No
White
Box

Quanta D51-1U Yes Yes Yes Yes Yes

. . . Quanta D51-2U Yes Yes Yes Yes Yes

. . . Quanta T41 Yes Yes Yes Yes Yes

. . . Intel Rinjin Yes Yes Yes Yes Yes
Virtual
Node

InfraSIM vNode Yes Yes No No No

Important:

1. RackHD classified main server node features into four tiers as below:

• Tier 1: Discovery, Catalog, Telemetry, Power Management and UID LED control

• Tier 2: OS Installation

• Tier 3: Firmware Update

• Tier 4: RAID Configuration, Secure Erase

2. RackHD utilizes industry standard protocols to talk with server such as IPMI, PXE, etc. So in theory, any server
that supports those protocols can be supported by RackHD at T1 & T2 feature level easily. Many community

16 Chapter 1. Contents



RackHD Documentation, Release 2.0

users have been using RackHD to support various severs from HP, Lenovo, Inspur etc.

3. Specific for Cisco server, RackHD supports UCS Manager solution provided by Cisco to manage server nodes
behind UCS manager. So user could use “RackHD + UCS service” combination to support big range of Cisco
servers.

4. Specific for Dell server, we provided extended services “smi_service” to support additional Dell server advanced
features such as WSMAN. So user also could use “RackHD + smi_service” combination to support big range
of Dell servers (ex: 14 Gen server, Dell FX2) and more features.

5. The RAID Configuration and Secure Erease Feature rely on underlying hardware support. Currently RackHD
supports LSI Megaraid RAID card series, so any server that uses this card could support these features.

6. InfraSIM vNode is a virtualized server which could simulate most features in a physical server. It is widely used
by RackHD team in feature development and testing. (see more at https://github.com/InfraSIM/)

1.3.2 Switch Compatibility List (Qualified by RackHD team)

Vendor Type T1: Discovery. . . T2: Configuration
Arista Arista 7124 Yes Yes
Brocade VDX-6740 Yes Yes
. . . VDX-6740T Yes Yes
Cisco Nexus 3048 Yes Yes
. . . Nexus 3172T Yes Yes
. . . Nexus C3164PQ Yes Yes
. . . Nexus C9332PQ Yes Yes
. . . Nexus C9392PX-E Yes Yes
Dell S4048-ON Yes Yes
. . . S6100-ON Yes Yes
. . . Z9100-ON Yes Yes

Important:

RackHD classified main switch node features into two tiers as below:

• Tier 1: Discovery, Catalog, Telemetry

• Tier 2: Configuration

1.3.3 iPDU/SmartPDU Compatibility List (Qualified by RackHD team)

Vendor Type T1: Discovery. . . T2: Control Outlet T3: FW Update
APC AP8941 Yes Yes No
. . . AP7998 Yes Yes No
ServerTech STV4101C Yes Yes No
. . . STV4102C Yes Yes No
. . . VDX-6740T Yes Yes No
. . . CS-18VYY8132A2 Yes Yes Yes
Panduit IPI Smart PDU Gateway Yes Yes No

1.3. RackHD Support Matrix 17

https://github.com/InfraSIM/


RackHD Documentation, Release 2.0

Important:

RackHD classified main iPDU node features into three tiers as below:

• Tier 1: Discovery, Catalog, Telemetry

• Tier 2: Control Outlet

• Tier 3: Firmware Update

1.3.4 RackHD OS Installation Support List (Qualified by RackHD team)

OS Version
ESXi 5.5/6.0
RHEL 7.0/7.1/7.2
CentOS 6.5/7
Ubuntu trusty(14.04)/xenial(16.04)/artful(17.10)
Debian wheezy(7)/jessie(8)/stretch(9)
SUSE openSUSE: leap/42.1, SLES: 11/12
CoreOS 899.17.0
Windows Server 2012
PhotonOS 1.0

1.4 Quick Start Guide

Table of Contents

• Quick Start Guide

– Introduction

– Install Docker & Docker Compose

– Setup RackHD Service

– Setup a Virtualized Infrastructure Environment

– Setup OS Mirror

– Install OS with RackHD API

– Monitor Progress

– Login Installed OS

1.4.1 Introduction

In this quick start guide you will learn:

1. How to use a docker based RackHD service.

18 Chapter 1. Contents



RackHD Documentation, Release 2.0

2. How to use RackHD API to install OS on a node(the node is a virtual node powered by a bare metal server
simulator InfraSIM https://github.com/infrasim)

1.4.2 Install Docker & Docker Compose

Install Docker CE https://docs.docker.com/install/#server
Install Docker Compose https://docs.docker.com/compose/install/#install-compose

1.4.3 Setup RackHD Service

mkdir ~/src && cd ~/src
git clone https://github.com/RackHD/RackHD

cd ~/src/RackHD/example/rackhd
sudo docker-compose up -d

# Check RackHD services are running
sudo docker-compose ps

# Sample response:
#
# Name Command State
→˓ Ports
# -----------------------------------------------------------------------------------
→˓---------------------------
# rackhd_dhcp-proxy_1 node /RackHD/on-dhcp-proxy ... Up
# rackhd_dhcp_1 /docker-entrypoint.sh Up
# rackhd_files_1 /docker-entrypoint.sh Up
# rackhd_http_1 node /RackHD/on-http/index.js Up
# rackhd_mongo_1 docker-entrypoint.sh mongod Up 27017/
→˓tcp, 0.0.0.0:9090->9090/tcp
# rackhd_rabbitmq_1 docker-entrypoint.sh rabbi ... Up
# rackhd_syslog_1 node /RackHD/on-syslog/ind ... Up
# rackhd_taskgraph_1 node /RackHD/on-taskgraph/ ... Up
# rackhd_tftp_1 node /RackHD/on-tftp/index.js Up

1.4.4 Setup a Virtualized Infrastructure Environment

cd ~/src/RackHD/example/infrasim
sudo docker-compose up -d

# Sample response
# 7b8944444da7 infrasim_infrasim ... 22/tcp, 80/tcp infrasim_infrasim_1

For example, we choose infrasim_infrasim0_1, use following command to retrieve its IP Address.

sudo docker exec -it infrasim_infrasim_1 ifconfig br0

# Sample response
# br0 Link encap:Ethernet HWaddr 02:42:ac:1f:80:03
# inet addr:172.31.128.112 Bcast:172.31.143.255 Mask:255.255.240.0
# UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

(continues on next page)

1.4. Quick Start Guide 19

https://github.com/infrasim
https://docs.docker.com/install/#server
https://docs.docker.com/compose/install/#install-compose


RackHD Documentation, Release 2.0

(continued from previous page)

# RX packets:2280942 errors:0 dropped:0 overruns:0 frame:0
# TX packets:2263193 errors:0 dropped:0 overruns:0 carrier:0
# collisions:0 txqueuelen:0
# RX bytes:207752197 (207.7 MB) TX bytes:265129274 (265.1 MB)

Note: If br0 is not available, use sudo docker-compose restart to restart the vNodes.

Here 172.31.128.112 is infrasim_infrasim_1’s BMC IP Address.

In order to connect to vNode from “UltraVNC Viewer” vnc_forward script should be executed.

./vnc_forward

# Sample response
# ...
# Setting VNC port 28109 for IP 172.31.128.109
# Setting VNC port 28110 for IP 172.31.128.110
# Setting VNC port 28111 for IP 172.31.128.111
# Setting VNC port 28112 for IP 172.31.128.112
# Setting VNC port 28113 for IP 172.31.128.113
# Setting VNC port 28114 for IP 172.31.128.114
# ...

Get vNode’s node-id

curl localhost:9090/api/current/nodes?type=compute | jq '.' | grep \"id\"

# Example Response
# "id": "5acf78e3291c0a010002a9a8",

Here 5acf78e3291c0a010002a9a8 is our target node-id

Ensure its OBM setting is not blank

# replace the node-id with your own
curl localhost:9090/api/current/nodes/<node-id>/obm | jq '.'

# Example Response

# [
# {
# "config": {
# "host": "02:42:ac:1f:80:03",
# "user": "__rackhd__"
# },
# "service": "ipmi-obm-service",
# "node": "/api/2.0/nodes/5acf78e3291c0a010002a9a8",
# "id": "5acf7973291c0a010002a9d2"
# }
# ]

If the response comes back [], please follow OBM Setting, to add OBM setting.

20 Chapter 1. Contents



RackHD Documentation, Release 2.0

1.4.5 Setup OS Mirror

To provision the OS to the node, RackHD can act as an OS mirror repository. Let’s take CentOS installation for
example.

cd ~/src/RackHD/example/rackhd/files/mount/common
mkdir -p centos/7/os/x86_64/
sudo mount -o loop ~/iso/CentOS-7-x86_64-DVD-1708.iso centos/7/os/x86_64

CentOS-7-x86_64-DVD-1708.iso can be downloaded from Official site.

/files/mount/common is a volume which is mounted to rackhd/files docker container as a static file ser-
vice. After ISO file is mounted, we need to restart file service. (This is a docker’s potential bug which cannot sync
files mounted in the volume when container is running)

cd ~/src/RackHD/example/rackhd
sudo docker-compose restart

The OS mirror will be available on http://172.31.128.2:9090/common/centos/7/os/x86_64 from vNode’s perspective.

1.4.6 Install OS with RackHD API

Download CentOS OS installation payload example (more Other OS Examples.)

wget https://raw.githubusercontent.com/RackHD/RackHD/master/example/samples/install_
→˓centos_7_payload_minimal.json

Edit downloaded payload json install_centos_7_payload_minimal.json as below, 172.31.128.2 is the OS mirror’s IP
address.

# Change the "repo" line to below.
"repo": "http://172.31.128.2:9090/common/centos/7/os/x86_64"

Install CentOS by using build-in InstallCentOS workflow

curl -X POST -H 'Content-Type: application/json' -d @install_centos_7_payload_minimal.
→˓json localhost:9090/api/2.0/nodes/<nodeID>/workflows?name=Graph.InstallCentOS |
→˓jq .

1.4.7 Monitor Progress

Use UltraVNC on the desktop to view the OS installation, replace <your-ip> with your own, and <port> you
retrieved using the vnc_forward script above

1.4. Quick Start Guide 21

https://wiki.centos.org/Download
http://172.31.128.2:9090/common/centos/7/os/x86_64
https://github.com/RackHD/RackHD/tree/master/example/samples


RackHD Documentation, Release 2.0

After login, you should see CentOS7 is installing

22 Chapter 1. Contents



RackHD Documentation, Release 2.0

It will PXE boot from the CentOS installation image and progress screen will show up in about 5 mins, the entire
installation takes around 9 mins. You can move on the guide or revisit previous sessions, then go back after 4~5
minutes

1.4.8 Login Installed OS

Once the OS has been installed, you can try login the system via UltraVNC console. Installed OS default user-
name/password: root/RackHDRocks!

1.4. Quick Start Guide 23



RackHD Documentation, Release 2.0

1.5 Running RackHD

1.5.1 Deployment Environment

Table of Contents

• Deployment Environment

– Security Constraints

– Hardware Controls

– IP Address Management

– RackHD Network Access Requirements

– Possible Configurations

RackHD can use a number of different mechanisms to coordinate and control bare metal hardware, and in the most
common cases, a deployment is working with at least two networks, connected on different network interface cards,
to the RackHD instance.

RackHD can be configured to work with a single network, or several more networks, depending on the needs of the
installation. The key elements to designing a RackHD installation are:

24 Chapter 1. Contents



RackHD Documentation, Release 2.0

• understanding what network security constraints you are using

• understanding the hardware controls you’re managing and how it can be configured

• understanding where and how IP address management is to be handled in each of the networks that the first two
items mandate.

At a minimum, RackHD expects a “southbound” network, where it is interacting with the machines it is PXE booting
a network provided with DHCP, TFTP, and HTTP and a “northbound” network where RackHD exposes the APIs for
automation and interaction. This basic setup was created to allow and encourage separation of traffic for PXE booting
nodes and API controls. The example setup in Quick Start Guide shows a minimal configuration.

Security Constraints

RackHD as a technology is configured to control and automate hardware, which implies a number of natural security
concerns. As a service, it provides an API control endpoint, which in turn uses protocols on networks relevant to the
hardware it’s managing. One of the most common of those protocols is IPMI, which has known security flaws, but is
used because it’s one of the most common mechanisms to control datacenter servers.

A relatively common requirement in datacenters is that networks used for IPMI traffic are isolated from other networks,
to limit the vectors by which IPMI endpoints could be attacked. When RackHD is using IPMI, it simply needs to have
L3 (routed IP) network traffic to the relevant endpoints in order for the workflow engine and various controls to operate.

Access to IPMI endpoints on hardware can be separated off onto it’s own network, or combined with other networks.
It is generally considered best practice to separate this network entirely, or constrain it to highly controlled networks
where access is strictly limited.

Hardware Controls

KCS and controlling the BMC

Most Intel servers with BMCs include a “KCS” (Keyboard Controller Style) communications channel between
the motherboard and the BMC. This allows communications between the motherboard and the BMC, where the
software running on the main computer can interrogate and configure the BMC.

Software tools such a IPMItool on Linux can leverage this interface, which shows up as a kernel device.

RackHD is configured to use and leverage this interface by default to interrogate the BMC and provide information
about it’s settings to RackHD. It can also be used by workflows set values for the BMC. If the server you are
working with does not have a BMC or does not have a KCS channel (as is the case with a virtual machine), then
you will often see an error message on the console of the managed server:

1.5. Running RackHD 25

https://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface
https://community.rapid7.com/community/metasploit/blog/2013/07/02/a-penetration-testers-guide-to-ipmi


RackHD Documentation, Release 2.0

insmod: ERROR: could not load module /opt/drivers/ipmi_msghandler.ks: No such file
→˓or directory

when running the default RackHD discovery through the microkernel.

RackHD manages hardware generally using at least one network interface. Network switches typically have an ad-
ministrator network interface, and Smart PDUs that can be managed by RackHD have a administrative gateway.

Compute servers have the most varied and complex setup, with data center servers often leveraging a BMC (Baseboard
Management Controller). A BMC is a separate embedded computer monitoring and controlling a larger computer. The
protocol used most commonly to communicate to a BMC is IPMI, the details of which can matter significantly.

Desktop class machines (and many laptops) often do not have BMCs, although some Intel desktops may have an
alternative technology: AMT which provides some similiar mechanisms.

You can view a detailed diagram of the components inside a BMC at IPMI Basics, although every hardware vendor
is slighty different in how they configure their servers. The primary difference for most Intel-based server vendors is
how the BMC network interface is exposed. There are two options that you will commonly see:

• LOM [Lights out Management] The BMC has has a dedicated network interface to the BMC

• SOM [“Shared on motherboard”] The network interface to the BMC shares a network interface with the moth-
erboard. In these cases, the same physical plug is backed by two internal network interfaces (each with its
own hardware address).

If you’re working with a server with a network interface shared by the motherboard and BMC, then separating the
networks that provide IPMI access and the networks that the server will use during operation may be significantly
challenging.

The BMC provides a lot of information about the computer, but not everything. Frequently devices such as additional
NIC cards, RAID array controllers, or other devices attached to internal PCI busses aren’t accessible or known about
from the BMC. This is why RackHD’s default discovery mechanism operates by Discovery and Geneaology, which
loads an OS into RAM on the server and uses that OS to interrogate the hardware.

IP Address Management

With multiple networks in use with RackHD, how machines are getting IP addresses and what systems are repsonsible
for providing those IP addresses another critical concern. Running DHCP, which RackHD integrates with tightly to
enable PXE booting of hosts, much be done carefully and there should only ever be a single DHCP server running on
a given layer-2 network. Many existing systems will often already have DHCP servers operational or a part of their
environment, or may mandate that IP addresses are set statically or provided via a static configuration.

RackHD can be configured without a local DHCP instance, although DHCP is a required component for PXE booting
a host. If DHCP is provided externally, then RackHD only needs to provide the on-dhcp-proxy process, which will
need to be on the same network as the DHCP server, and leverages the DHCP protocols capability to separate out the
service providing the TFTP boot information from the service providing IP address (and other) configuration details
for hosts.

RackHD Network Access Requirements

• DHCP-proxy The DHCP proxy service for RackHD needs to be on the same Layer 2 (broadcast) network as
DHCP to provide PXE capabilities to machines PXE booting on that network.

• TFTP, HTTP The PXE network also needs to be configured to expose the south-bound HTTP API interfaces
from on-http and the on-tftp service to support RackHD PXE booting hosts by providing the bootload-

26 Chapter 1. Contents

https://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface
https://en.wikipedia.org/wiki/Intel_Active_Management_Technology
https://www.thomas-krenn.com/en/wiki/IPMI_Basics


RackHD Documentation, Release 2.0

ers, and responding to requests for files and custom templates or scripts that coordinate with RackHD’s
workflow engine.

• IPMI, HTTP/Redfish, SNMP Layer 3 (routed IP) access to the out of band network - the network used to
communicate with server BMCs, SmartPDU management gateways, or Network switch administrative
network interfaces.

Possible Configurations

In an environment where the hardware you’re managing doesn’t have additional network interfaces, and the BMC
shares the motherboard physical network interface, the configuration will be fairly limited.

In this example, RackHD is providing DHCP to a network which is connected through a layer3 switch or router to the
rest of the network. RackHD’s DHCP server can provide IP addresses to the motherboard NICs as the PXE boot, and
may also provide IP addresses to the BMCs if they are configured to use DHCP.

If the compute servers are not configured to use DHCP in this setup, then the BMC IP addresses must be statically
set/assigned and carefully managed so as to not overlap with the DHCP range that RackHD’s DHCP services are
providing.

1.5. Running RackHD 27



RackHD Documentation, Release 2.0

In this example, the servers have a dedicated “lights out” network interface, which is on a separate network and
RackHD can access it via one of its interfaces. RackHD is still providing DHCP to the servers for PXE booting on the
motherboard, but the IP addresses of the BMCs can be completely indepdent in how they are provided.

This example, or a variation on it, is how you might configure a RackHD deployment in a dedicated data center
where the same people responsible for running RackHD are responsible for the IP addresses and general datacenter
infrastructure. In general, this kind of configuration is what you might do with shared responsibilities and close
coordination between network configurations within and external to RackHD

28 Chapter 1. Contents



RackHD Documentation, Release 2.0

In this example, all the networks are isolated and separate, and in this case isolated to the instance of RackHD as well.
RackHD may be multiple network interfaces assigned to it with various network configurations. The BMC network
can be set to use a DHCP or statically assigned IP addresses - as long as the network routing is clear and consistent to
RackHD. The servers also have multiple network interface cards attached to the motherboard, each of which can be
on separate networks, or they can be used in combined configurations.

This example highlights how RackHD might be configured if it was being used to independently manage a rack of
gear, as in an “rack of machines as an appliance” use case, or in a very large scale environment, where every rack has
it’s own dedicated management network that are functionally identical.

1.5.2 Installation

Installation from Source Code

Table of Contents

• Installation from Source Code

1.5. Running RackHD 29



RackHD Documentation, Release 2.0

– Prerequisites

* NICs

– Start RackHD

– How to update to the latest code

– How to Reset the Database

Prerequisites

NICs

Ubuntu 14.04

Ubuntu 16.04

Start with an Ubuntu trusty(14.04) instance with 2 nics:

• eth0 for the public network - providing access to RackHD APIs, and providing routed (layer3) access to out
of band network for machines under management

• eth1 for dhcp/pxe to boot/configure the machines

edit the network:

• eth0 - assign IP address as appropriate for the environment, or you can use DHCP

• eth1 static ( 172.31.128.0/22 )

please check the network config file: /etc/network/interfaces. The eth1’s ip address is 172.31.128.1
Like as follows:

auto eth1
iface eth1 inet static
address 172.31.128.1
post-up ifconfig eth1 promisc

Start with an Ubuntu xenial(16.04) instance with 2 nics:

• ens160 for the public network - providing access to RackHD APIs, and providing routed (layer3) access to
out of band network for machines under management

• ens192 for dhcp/pxe to boot/configure the machines

edit the network:

• ens160 - assign IP address as appropriate for the environment, or you can use DHCP

• ens192 static ( 172.31.128.0/22 )

please check the network config file: /etc/network/interfaces. The ens192’s ip address is 172.31.128.
1 Like as follows:

auto ens192
iface ens192 inet static
address 172.31.128.1
post-up ifconfig ens192 promisc

We will leverage the ansible roles created for the RackHD demonstration environment.

30 Chapter 1. Contents



RackHD Documentation, Release 2.0

cd ~
sudo apt-get install git
sudo apt-get update
sudo apt-get dist-upgrade
sudo reboot

cd ~
git clone https://github.com/rackhd/rackhd
sudo apt-get install ansible
cd ~/rackhd/packer/ansible
ansible-playbook -i "local," -K -c local rackhd_local.yml

This created the default configuration file at /opt/monorail/config.json from https://github.com/RackHD/RackHD/blob/
master/packer/ansible/roles/monorail/files/config.json. You may need to update this and /etc/dhcpd.conf to match your
local network configuration.

This will install all the relevant dependencies and code into ~/src, expecting that it will be run with pm2.

Start RackHD

cd ~
sudo pm2 start rackhd-pm2-config.yml

Some useful commands of pm2:

sudo pm2 restart all # restart all RackHD services
sudo pm2 restart on-taskgraph # restart the on-taskgraph service only.
sudo pm2 logs # show the combined real-time log for all RackHD
→˓services
sudo pm2 logs on-taskgraph # show the on-taskgraph real-time log
sudo pm2 flush # clean the RackHD logs
sudo pm2 status # show the status of RackHD services

Notesisc-dhcp-server is installed through ansible playbook, but sometimes it won’t start on Ubuntu boot (https://
ubuntuforums.org/showthread.php?t=2068111), check if DHCP service is started:

sudo service --status-all

If isc-dhcp-server is not running, run below to start DHCP service:

sudo service isc-dhcp-server start

How to update to the latest code

cd ~/src
./scripts/clean_all.bash && ./scripts/reset_submodules.bash && ./scripts/link_install_
→˓locally.bash

How to Reset the Database

echo "db.dropDatabase()" | mongo pxe

1.5. Running RackHD 31

https://github.com/RackHD/RackHD/blob/master/packer/ansible/roles/monorail/files/config.json
https://github.com/RackHD/RackHD/blob/master/packer/ansible/roles/monorail/files/config.json
http://pm2.keymetrics.io/
https://ubuntuforums.org/showthread.php?t=2068111
https://ubuntuforums.org/showthread.php?t=2068111


RackHD Documentation, Release 2.0

Installation from Debian Package

Table of Contents

• Installation from Debian Package

– Prerequisites

* NICs

* NodeJS

– Install & Configure RackHD

– How to Erase the Database to Restart Everything

Prerequisites

NICs

Ubuntu 14.04

Ubuntu 16.04

Start with an Ubuntu trusty(14.04) instance with 2 nics:

• eth0 for the public network - providing access to RackHD APIs, and providing routed (layer3) access to out
of band network for machines under management

• eth1 for dhcp/pxe to boot/configure the machines

edit the network:

• eth0 - assign IP address as appropriate for the environment, or you can use DHCP

• eth1 static ( 172.31.128.0/22 )

please check the network config file: /etc/network/interfaces. The eth1’s ip address is 172.31.128.1
Like as follows:

auto eth1
iface eth1 inet static
address 172.31.128.1
post-up ifconfig eth1 promisc

Start with an Ubuntu xenial(16.04) instance with 2 nics:

• ens160 for the public network - providing access to RackHD APIs, and providing routed (layer3) access to
out of band network for machines under management

• ens192 for dhcp/pxe to boot/configure the machines

edit the network:

• ens160 - assign IP address as appropriate for the environment, or you can use DHCP

• ens192 static ( 172.31.128.0/22 )

please check the network config file: /etc/network/interfaces. The ens192’s ip address is 172.31.128.
1 Like as follows:

32 Chapter 1. Contents



RackHD Documentation, Release 2.0

auto ens192
iface ens192 inet static
address 172.31.128.1
post-up ifconfig ens192 promisc

NodeJS

If Node.js is not installed

4.x

6.x

8.x

sudo apt-get remove nodejs nodejs-legacy
curl -sL https://deb.nodesource.com/setup_4.x | sudo -E bash -
sudo apt-get install -y nodejs

sudo apt-get remove nodejs nodejs-legacy
curl -sL https://deb.nodesource.com/setup_6.x | sudo -E bash -
sudo apt-get install -y nodejs

sudo apt-get remove nodejs nodejs-legacy
curl -sL https://deb.nodesource.com/setup_8.x | sudo -E bash -
sudo apt-get install -y nodejs

Ensure Node.js is installed properly, example:

node -v

Install & Configure RackHD

After Prerequisites installation, there’re two options to install and configure RackHD from package

Either (a) or (b) can lead the way to install RackHD from debian packages.

1. Install/Configure with Ansible Playbook

2. Install/Configure with Step by Step Guide

Ansible Playbook

Step by Step

Install/Configure with Ansible Playbook

(1). install git and ansible

sudo apt-get install git
sudo apt-get install ansible

(2). clone RackHD code

git clone https://github.com/RackHD/RackHD.git

1.5. Running RackHD 33



RackHD Documentation, Release 2.0

The services files in /etc/init/ all need a conf file to exist in /etc/default/{service} Touch those files
to allow the upstart scripts to start automatically.

for service in $(echo "on-dhcp-proxy on-http on-tftp on-syslog on-taskgraph");
do sudo touch /etc/default/$service;
done

(3). Run the ansible playbooks

These will install the prerequisite packages, install the RackHD debian packages, and copy default configuration files

cd RackHD/packer/ansible
ansible-playbook -c local -i "local," rackhd_package.yml

(4). Verify RackHD services

All the services are started and have logs in /var/log/rackhd. Verify with service on-[something] status

Notesisc-dhcp-server is installed through ansible playbook, but sometimes it won’t start on Ubuntu boot (https:
//ubuntuforums.org/showthread.php?t=2068111), check if DHCP service is started:

sudo service --status-all

If isc-dhcp-server is not running, run below to start DHCP service:

sudo service isc-dhcp-server start

Install/Configure with Step by Step Guide

(1). Install the prerequisite packages:

sudo apt-get install rabbitmq-server
sudo apt-get install mongodb
sudo apt-get install snmp
sudo apt-get install ipmitool

sudo apt-get install ansible
sudo apt-get install apt-mirror
sudo apt-get install amtterm

sudo apt-get install isc-dhcp-server

Note: MongoDB versions 2.4.9 (on Ubuntu 14.04), 2.6.10 (on Ubuntu 16.04) and 3.4.9 (on both Ubuntu
14.04 and 16.04) are verified with RackHD. For more details on how to install MongDB 3.4.9, please
refer to: https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/

(2). Set up the RackHD bintray repository for use within this instance of Ubuntu

echo "deb https://dl.bintray.com/rackhd/debian trusty main" | sudo tee -a /etc/apt/
→˓sources.list
sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys
→˓379CE192D401AB61
sudo apt-get update

(3). Install RackHD debian package

The services files in /etc/init/ all need a conf file to exist in /etc/default/{service} Touch those files to allow the upstart
scripts to start automatically.

34 Chapter 1. Contents

https://ubuntuforums.org/showthread.php?t=2068111
https://ubuntuforums.org/showthread.php?t=2068111
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/


RackHD Documentation, Release 2.0

for service in $(echo "on-dhcp-proxy on-http on-tftp on-syslog on-taskgraph");
do sudo touch /etc/default/$service;
done

Install the RackHD Packages. Note: these packages are rebuilt on every commit to master and are not explicitly
versioned, but intended as a means to install or update to the latest code most conveniently.

sudo apt-get install on-dhcp-proxy on-http on-taskgraph
sudo apt-get install on-tftp on-syslog

(4). Basic RackHD Configuration

DHCP

Update dhcpd.conf per your network configuration

# RackHD added lines
deny duplicates;

ignore-client-uids true;

subnet 172.31.128.0 netmask 255.255.240.0 {
range 172.31.128.2 172.31.143.254;
# Use this option to signal to the PXE client that we are doing proxy DHCP
option vendor-class-identifier "PXEClient";

}

Notessometimes isc-dhcp-server won’t start on Ubuntu boot (https://ubuntuforums.org/showthread.php?t=2068111),
check if DHCP service is started:

sudo service --status-all

If isc-dhcp-server is not running, run below to start DHCP service:

sudo service isc-dhcp-server start

RACKHD APPLICATIONS

Create the required file /opt/monorail/config.json , you can use the demonstration configuration file at https://github.
com/RackHD/RackHD/blob/master/packer/ansible/roles/monorail/files/config.json as a reference.

RACKHD BINARY SUPPORT FILES

Downloaded binary files from bintray.com/rackhd/binary and placed them using https://github.com/RackHD/RackHD/
blob/master/packer/ansible/roles/images/tasks/main.yml as a guide.

#!/bin/bash

mkdir -p /var/renasar/on-tftp/static/tftp
cd /var/renasar/on-tftp/static/tftp

for file in $(echo "\
monorail.ipxe \
monorail-undionly.kpxe \
monorail-efi64-snponly.efi \
monorail-efi32-snponly.efi");do
wget "https://dl.bintray.com/rackhd/binary/ipxe/$file"
done

(continues on next page)

1.5. Running RackHD 35

https://ubuntuforums.org/showthread.php?t=2068111
https://github.com/RackHD/RackHD/blob/master/packer/ansible/roles/monorail/files/config.json
https://github.com/RackHD/RackHD/blob/master/packer/ansible/roles/monorail/files/config.json
https://github.com/RackHD/RackHD/blob/master/packer/ansible/roles/images/tasks/main.yml
https://github.com/RackHD/RackHD/blob/master/packer/ansible/roles/images/tasks/main.yml


RackHD Documentation, Release 2.0

(continued from previous page)

mkdir -p /var/renasar/on-http/static/http/common
cd /var/renasar/on-http/static/http/common

for file in $(echo "\
discovery.docker.tar.xz \
initrd-1.2.0-rancher \
vmlinuz-1.2.0-rancher");do
wget "https://dl.bintray.com/rackhd/binary/builds/$file"
done

All the services are started and have logs in /var/log/rackhd. Verify with service on-[something] status

How to Erase the Database to Restart Everything

sudo service on-http stop
sudo service on-dhcp-proxy stop
sudo service on-syslog stop
sudo service on-taskgraph stop
sudo service on-tftp stop

mongo pxe
db.dropDatabase()
^D

sudo service on-http start
sudo service on-dhcp-proxy start
sudo service on-syslog start
sudo service on-taskgraph start
sudo service on-tftp start

Installation from NPM Package

Table of Contents

• Installation from NPM Package

– Ubuntu

* Prerequisites

* NodeJS

* Install & Configure RackHD

* How to Erase the Database to Restart Everything

36 Chapter 1. Contents



RackHD Documentation, Release 2.0

Ubuntu

Prerequisites

NICs

Ubuntu 14.04

Ubuntu 16.04

Start with an Ubuntu trusty(14.04) instance with 2 nics:

• eth0 for the public network - providing access to RackHD APIs, and providing routed (layer3) access to out
of band network for machines under management

• eth1 for dhcp/pxe to boot/configure the machines

edit the network:

• eth0 - assign IP address as appropriate for the environment, or you can use DHCP

• eth1 static ( 172.31.128.0/22 )

please check the network config file: /etc/network/interfaces. The eth1’s ip address is 172.31.128.1
Like as follows:

auto eth1
iface eth1 inet static
address 172.31.128.1
post-up ifconfig eth1 promisc

Start with an Ubuntu xenial(16.04) instance with 2 nics:

• ens160 for the public network - providing access to RackHD APIs, and providing routed (layer3) access to
out of band network for machines under management

• ens192 for dhcp/pxe to boot/configure the machines

edit the network:

• ens160 - assign IP address as appropriate for the environment, or you can use DHCP

• ens192 static ( 172.31.128.0/22 )

please check the network config file: /etc/network/interfaces. The ens192’s ip address is 172.31.128.
1 Like as follows:

auto ens192
iface ens192 inet static
address 172.31.128.1
post-up ifconfig ens192 promisc

NodeJS

If Node.js is not installed

4.x

6.x

8.x

1.5. Running RackHD 37



RackHD Documentation, Release 2.0

sudo apt-get remove nodejs nodejs-legacy
curl -sL https://deb.nodesource.com/setup_4.x | sudo -E bash -
sudo apt-get install -y nodejs

sudo apt-get remove nodejs nodejs-legacy
curl -sL https://deb.nodesource.com/setup_6.x | sudo -E bash -
sudo apt-get install -y nodejs

sudo apt-get remove nodejs nodejs-legacy
curl -sL https://deb.nodesource.com/setup_8.x | sudo -E bash -
sudo apt-get install -y nodejs

Ensure Node.js is installed properly, example:

node -v

• Dependencies

Install dependency packages

sudo apt-get install build-essential
sudo apt-get install libkrb5-dev
sudo apt-get install rabbitmq-server
sudo apt-get install mongodb
sudo apt-get install snmp
sudo apt-get install ipmitool

sudo apt-get install git
sudo apt-get install unzip
sudo apt-get install ansible
sudo apt-get install apt-mirror
sudo apt-get install amtterm

sudo apt-get install isc-dhcp-server

Note: MongoDB versions 2.4.9 (on Ubuntu 14.04), 2.6.10 (on Ubuntu 16.04) and 3.4.9 (on both Ubuntu 14.04
and 16.04) are verified with RackHD. For more details on how to install MongDB 3.4.9, please refer to: https:
//docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/

Install & Configure RackHD

1. Install RackHD NPM Packages

Install the latest release of RackHD

for service in $(echo "on-dhcp-proxy on-http on-tftp on-syslog on-taskgraph");
do
npm install $service;
done

2. Basic RackHD Configuration

38 Chapter 1. Contents

https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/


RackHD Documentation, Release 2.0

• DHCP

Update /etc/dhcp/dhcpd.conf per your network configuration

# RackHD added lines
deny duplicates;

ignore-client-uids true;

subnet 172.31.128.0 netmask 255.255.240.0 {
range 172.31.128.2 172.31.143.254;
# Use this option to signal to the PXE client that we are doing proxy DHCP
option vendor-class-identifier "PXEClient";

}

• Open Ports in Firewall

If the firewall is enabled, open below ports in firewall:

– 4011/udp

– 8080/tcp

– 67/udp

– 8443/tcp

– 69/udp

– 9080/tcp

An example of opening port:

sudo ufw allow 8080

• CONFIGURATION FILE

Create the required file /opt/monorail/config.json , you can use the demonstration configuration file at https:
//github.com/RackHD/RackHD/blob/master/packer/ansible/roles/monorail/files/config.json as a reference.

• RACKHD BINARY SUPPORT FILES

Download binary files from bintray and placed them with below shell script.

#!/bin/bash

mkdir -p node_modules/on-tftp/static/tftp
cd node_modules/on-tftp/static/tftp

for file in $(echo "\
monorail.ipxe \
monorail-undionly.kpxe \
monorail-efi64-snponly.efi \
monorail-efi32-snponly.efi");do
wget "https://dl.bintray.com/rackhd/binary/ipxe/$file"
done

cd -

mkdir -p node_modules/on-http/static/http/common
cd node_modules/on-http/static/http/common

(continues on next page)

1.5. Running RackHD 39

https://github.com/RackHD/RackHD/blob/master/packer/ansible/roles/monorail/files/config.json
https://github.com/RackHD/RackHD/blob/master/packer/ansible/roles/monorail/files/config.json


RackHD Documentation, Release 2.0

(continued from previous page)

for file in $(echo "\
discovery.docker.tar.xz \
initrd-1.2.0-rancher \
vmlinuz-1.2.0-rancher");do
wget "https://dl.bintray.com/rackhd/binary/builds/$file"
done

cd -

3. Start RackHD

Start the 5 services of RackHD with pm2 and a yml file.

(a) Install pm2

sudo npm install pm2 -g

(b) Prepare a yml file

An example of yml file:

apps:
- script: index.js
name: on-taskgraph
cwd: node_modules/on-taskgraph

- script: index.js
name: on-http
cwd: node_modules/on-http

- script: index.js
name: on-dhcp-proxy
cwd: node_modules/on-dhcp-proxy

- script: index.js
name: on-syslog
cwd: node_modules/on-syslog

- script: index.js
name: on-tftp
cwd: node_modules/on-tftp

(c) Start Services

sudo pm2 start rackhd.yml

All the services are started:

App name id mode pid status restart uptime cpu
→˓mem watching

on-dhcp-proxy 2 fork 16189 online 0 0s 60%
→˓21.2 MB disabled
on-http 1 fork 16183 online 0 0s 100%

→˓21.3 MB disabled
on-syslog 3 fork 16195 online 0 0s 60%

→˓20.5 MB disabled
on-taskgraph 0 fork 16177 online 0 0s 6%

→˓21.3 MB disabled
on-tftp 4 fork 16201 online 0 0s 66%

→˓19.5 MB disabled
(continues on next page)

40 Chapter 1. Contents



RackHD Documentation, Release 2.0

(continued from previous page)

How to Erase the Database to Restart Everything

sudo pm2 stop rackhd.yml

mongo pxe
db.dropDatabase()
^D

sudo pm2 start rackhd.yml

Installation from NPM Package

Table of Contents

• Installation from NPM Package

– CentOS 7

* Prerequisites

* Install & Configure RackHD

* How to Erase the Database to Restart Everything

CentOS 7

Prerequisites

NICs

1. Start with an centos 7 instance with 2 nics:

• eno16777984 for the public network - providing access to RackHD APIs, and providing routed
(layer3) access to out of band network for machines under management

• eno33557248 for dhcp/pxe to boot/configure the machines

2. Edit the network:

• eno16777984 - assign IP address as appropriate for the environment, or you can use DHCP

• eno33557248 static ( 172.31.128.0/22 )

this is the default. it can be changed, but more than one file needs to be changed.)

Packages

• NodeJS

1.5. Running RackHD 41



RackHD Documentation, Release 2.0

4.x

6.x

8.x

sudo yum remove nodejs
curl -sL https://rpm.nodesource.com/setup_4.x | sudo bash -
sudo yum install -y nodejs

sudo yum remove nodejs
curl -sL https://rpm.nodesource.com/setup_6.x | sudo bash -
sudo yum install -y nodejs

sudo yum remove nodejs
curl -sL https://rpm.nodesource.com/setup_8.x | sudo bash -
sudo yum install -y nodejs

Optional: install build tools

To compile and install native addons from npm you may also need to install build tools:

yum install gcc-c++ make
# or: yum groupinstall 'Development Tools'

• RabbitMQ

1. Install Erlang

sudo yum -y update
sudo yum install -y epel-release
sudo yum install -y gcc gcc-c++ glibc-devel make ncurses-devel openssl-
→˓devel autoconf java-1.8.0-openjdk-devel git wget wxBase.x86_64

wget http://packages.erlang-solutions.com/erlang-solutions-1.0-1.
→˓noarch.rpm
sudo rpm -Uvh erlang-solutions-1.0-1.noarch.rpm
sudo yum -y update

2. Verify Erlang

erl

Sample output:

Erlang/OTP 19 [erts-8.2] [source-fbd2db2] [64-bit] [smp:8:8] [async-
→˓threads:10] [hipe] [kernel-poll:false]

Eshell V8.2 (abort with ^G)
1>

3. Install RabbitMQ

wget https://www.rabbitmq.com/releases/rabbitmq-server/v3.6.1/rabbitmq-
→˓server-3.6.1-1.noarch.rpm
sudo rpm --import https://www.rabbitmq.com/rabbitmq-signing-key-public.
→˓asc
sudo yum install -y rabbitmq-server-3.6.1-1.noarch.rpm

42 Chapter 1. Contents



RackHD Documentation, Release 2.0

4. Start RabbitMQ

sudo systemctl start rabbitmq-server
sudo systemctl status rabbitmq-server

• MongoDB

1. Configure the package management system (yum)

Create a /etc/yum.repos.d/mongodb-org-3.4.repo and add below lines:

[mongodb-org-3.4]
name=MongoDB Repository
baseurl=https://repo.mongodb.org/yum/redhat/$releasever/mongodb-org/3.
→˓4/x86_64/
gpgcheck=1
enabled=1
gpgkey=https://www.mongodb.org/static/pgp/server-3.4.asc

2. Install MongoDB

sudo yum install -y mongodb-org

3. Start MongoDB

sudo systemctl start mongod.service
sudo systemctl status mongod.service

• snmp

1. Install snmp

sudo yum install -y net-snmp

2. Start snmp

sudo systemctl start snmpd.service
sudo systemctl status snmpd.service

• ipmitool

sudo yum install -y OpenIPMI ipmitool

• git

1. Install git

sudo yum install -y git

2. Verify git

git --version

• ansible

1. Install ansible

sudo yum install -y ansible

2. Verify ansible

1.5. Running RackHD 43



RackHD Documentation, Release 2.0

ansible --version

Sample output:

ansible 2.2.0.0
config file = /etc/ansible/ansible.cfg
configured module search path = Default w/o overrides

• amtterm

sudo yum install amtterm

• dhcp

sudo yum install -y dhcp
sudo cp /usr/share/doc/dhcp-4.2.5/dhcpd.conf.example /etc/dhcp/dhcpd.conf

Install & Configure RackHD

1. Install RackHD NPM Packages

Install the latest release of RackHD

for service in $(echo "on-dhcp-proxy on-http on-tftp on-syslog on-taskgraph");
do
npm install $service;
done

2. Basic RackHD Configuration

• DHCP

Update /etc/dhcp/dhcpd.conf per your network configuration

# RackHD added lines
deny duplicates;

ignore-client-uids true;

subnet 172.31.128.0 netmask 255.255.240.0 {
range 172.31.128.2 172.31.143.254;
# Use this option to signal to the PXE client that we are doing proxy DHCP
option vendor-class-identifier "PXEClient";

}

• Open Ports in Firewall

If the firewall is enabled, open below ports in firewall:

– 4011/udp

– 8080/tcp

– 67/udp

– 8443/tcp

44 Chapter 1. Contents



RackHD Documentation, Release 2.0

– 69/udp

– 9080/tcp

An example of opening port:

sudo firewall-cmd --permanent --add-port=8080/tcp
sudo firewall-cmd --reload

• CONFIGURATION FILE

Create the required file /opt/monorail/config.json , you can use the demonstration configuration file at https:
//github.com/RackHD/RackHD/blob/master/packer/ansible/roles/monorail/files/config.json as a reference.

• RACKHD BINARY SUPPORT FILES

Download binary files from bintray and placed them with below shell script.

#!/bin/bash

mkdir -p node_modules/on-tftp/static/tftp
cd node_modules/on-tftp/static/tftp

for file in $(echo "\
monorail.ipxe \
monorail-undionly.kpxe \
monorail-efi64-snponly.efi \
monorail-efi32-snponly.efi");do
wget "https://dl.bintray.com/rackhd/binary/ipxe/$file"
done

cd -

mkdir -p node_modules/on-http/static/http/common
cd node_modules/on-http/static/http/common

for file in $(echo "\
discovery.docker.tar.xz \
initrd-1.2.0-rancher \
vmlinuz-1.2.0-rancher");do
wget "https://dl.bintray.com/rackhd/binary/builds/$file"
done

cd -

3. Start RackHD

Start the 5 services of RackHD with pm2 and a yml file.

(a) Install pm2

sudo npm install pm2 -g

(b) Prepare a yml file

An example of yml file:

apps:
- script: index.js
name: on-taskgraph
cwd: node_modules/on-taskgraph

(continues on next page)

1.5. Running RackHD 45

https://github.com/RackHD/RackHD/blob/master/packer/ansible/roles/monorail/files/config.json
https://github.com/RackHD/RackHD/blob/master/packer/ansible/roles/monorail/files/config.json


RackHD Documentation, Release 2.0

(continued from previous page)

- script: index.js
name: on-http
cwd: node_modules/on-http

- script: index.js
name: on-dhcp-proxy
cwd: node_modules/on-dhcp-proxy

- script: index.js
name: on-syslog
cwd: node_modules/on-syslog

- script: index.js
name: on-tftp
cwd: node_modules/on-tftp

(c) Start Services

sudo pm2 start rackhd.yml

All the services are started:

App name id mode pid status restart uptime cpu
→˓mem watching

on-dhcp-proxy 2 fork 16189 online 0 0s 60%
→˓21.2 MB disabled
on-http 1 fork 16183 online 0 0s 100%

→˓21.3 MB disabled
on-syslog 3 fork 16195 online 0 0s 60%

→˓20.5 MB disabled
on-taskgraph 0 fork 16177 online 0 0s 6%

→˓21.3 MB disabled
on-tftp 4 fork 16201 online 0 0s 66%

→˓19.5 MB disabled

How to Erase the Database to Restart Everything

sudo pm2 stop rackhd.yml

mongo pxe
db.dropDatabase()
^D

sudo pm2 start rackhd.yml

Installation from Docker

Table of Contents

• Installation from Docker

46 Chapter 1. Contents



RackHD Documentation, Release 2.0

– Install Docker & Docker Compose

– Download Source Code

– How to Erase the Database to Restart Everything

Install Docker & Docker Compose

Install Docker CE https://docs.docker.com/install/#server
Install Docker Compose https://docs.docker.com/compose/install/#install-compose

Download Source Code

git clone https://github.com/RackHD/RackHD

cd RackHD/docker

# for example if you are installing RackHD latest relesae:
sudo TAG=latest docker-compose pull # Download pre-built docker images
sudo TAG=latest docker-compose up -d # Create Containers and Run RackHD

For more information about tags please see https://hub.docker.com/r/rackhd/on-http/tags/

Check RackHD is running properly

cd RackHD/docker
sudo docker-compose ps

# example response
# Name Command State Ports
# ---------------------------------------------------------------------
# docker_core_1 /bin/echo exit Exit 0
# docker_dhcp-proxy_1 node /RackHD/on-dhcp-proxy ... Up
# docker_dhcp_1 /docker-entrypoint.sh Up
# docker_files_1 /docker-entrypoint.sh Up
# docker_http_1 node /RackHD/on-http/index.js Up
# docker_mongo_1 docker-entrypoint.sh mongod Up
# docker_rabbitmq_1 docker-entrypoint.sh rabbi ... Up
# docker_syslog_1 node /RackHD/on-syslog/ind ... Up
# docker_taskgraph_1 node /RackHD/on-taskgraph/ ... Up
# docker_tasks_1 /bin/echo exit Exit 0
# docker_tftp_1 node /RackHD/on-tftp/index.js Up

How to Erase the Database to Restart Everything

sudo docker exec -it docker_mongo_1 mongo rackhd
db.dropDatabase()
# CTRL+D to exit
# Restart RackHD

(continues on next page)

1.5. Running RackHD 47

https://docs.docker.com/install/#server
https://docs.docker.com/compose/install/#install-compose
https://hub.docker.com/r/rackhd/on-http/tags/


RackHD Documentation, Release 2.0

(continued from previous page)

cd RackHD/docker
sudo docker-compose restart

1.5.3 Configuration

Table of Contents

• Configuration

– Configuration Parameters

– HTTPS/TLS Configuration

– BMC Username and Password Configuration

– Certificates

* Generating Self-Signed Certificates

* Installing Certificates

– Setup HTTP/HTTPS endpoint

– Setup Taskgraph Endpoint

– Raid Configuration

* Setting up the docker image

* Posting the Workflow

* Payload Definition

* Results

The following JSON is an examples of the current defaults:

config.json

{
"amqp": "amqp://localhost",
"rackhdPublicIp": null,
"apiServerAddress": "172.31.128.1",
"apiServerPort": 9030,
"dhcpPollerActive": false,
"dhcpGateway": "172.31.128.1",
"dhcpProxyBindAddress": "172.31.128.1",
"dhcpProxyBindPort": 4011,
"dhcpSubnetMask": "255.255.240.0",
"gatewayaddr": "172.31.128.1",
"trustedProxy": false,
"httpEndpoints": [

{
"address": "0.0.0.0",
"port": 8080,
"httpsEnabled": false,
"proxiesEnabled": true,
"authEnabled": false,

(continues on next page)

48 Chapter 1. Contents

https://github.com/RackHD/RackHD/blob/master/packer%2Fansible%2Froles%2Fmonorail%2Ffiles%2Fconfig.json


RackHD Documentation, Release 2.0

(continued from previous page)

"yamlName": ["monorail-2.0.yaml", "redfish.yaml"]
},

],
"taskGraphEndpoint": {

"address": "172.31.128.1",
"port": 9030

},
"httpDocsRoot": "./build/apidoc",
"httpFileServiceRoot": "./static/files",
"httpFileServiceType": "FileSystem",
"fileServerAddress": "172.31.128.2",
"fileServerPort": 3000,
"fileServerPath": "/",
"httpProxies": [

{
"localPath": "/coreos",
"server": "http://stable.release.core-os.net",
"remotePath": "/amd64-usr/current/"

}
],
"httpStaticRoot": "/opt/monorail/static/http",
"authTokenSecret": "RackHDRocks!",
"authTokenExpireIn": 86400,
"mongo": "mongodb://localhost/pxe",
"sharedKey": "qxfO2D3tIJsZACu7UA6Fbw0avowo8r79ALzn+WeuC8M=",
"statsd": "127.0.0.1:8125",
"syslogBindAddress": "172.31.128.1",
"syslogBindPort": 514,
"tftpBindAddress": "172.31.128.1",
"tftpBindPort": 69,
"tftpRoot": "./static/tftp",
"minLogLevel": 2,
"logColorEnable": false,
"enableUPnP": true,
"ssdpBindAddress": "0.0.0.0",
"heartbeatIntervalSec": 10,
"wssBindAddress": "0.0.0.0",
"wssBindPort": 9100

}

Configuration Parameters

The following table describes the configuration parameters in config.json:

1.5. Running RackHD 49



RackHD Documentation, Release 2.0

Parameter Description
amqp URI for accessing the AMQP interprocess communica-

tions channel. RackHD can be configured to use a single
AMQP server or a AMQP cluster consisting of multiple
AMQP servers.
For a single AMQP server use the following formats:

"amqp": "amqp[s]://localhost",
"amqp": "amqp[s]://<host>:<port>",

For multiple AMQP servers use an array with the fol-
lowing format:

"amqp": ["amqp[s]://<host_1>:<port_1>",
→˓"amqp[s]://<host_2>:<port_2>",...,
→˓"amqp[s]://<host_n:<port_n>"],

amqpSsl SSL setting used to access the AMQP channel.
To enable SSL connections to the AMQP channel:

{
"enabled": true,
"keyFile": "/path/to/key/file",
"certFile": "/path/to/cert/file",
"caFile": "/path/to/cacert/file"

}

The key, certificate, and certificate authority files must
be in pem format. Alternatively, pfxFile can be used
to read key and certificate from a single file.

apiServerAddress External facing IP address of the API server
rackhdPublicIp RackHD’s public IP
apiServerPort External facing port of the API server
dhcpPollerActive Set to true to enable the dhcp isc lease poller (defaults

to false)
dhcpLeasesPath Path to dhcpd.leases file.
dhcpGateway Gateway IP for the network for DHCP
dhcpProxyBindAddress IP for DHCP proxy server to bind (defaults to ‘0.0.0.0’).

Note: DHCP binds to 0.0.0.0 to support broadcast re-
quest/response within Node.js.

dhcpProxyBindPort Port for DHCP proxy server to bind (defaults to 4011).
dhcpProxyOutPort Port for DHCP proxy server to respond to legacy boot

clients (defaults to 68).
dhcpProxyEFIOutPort Port for DHCP proxy server to respond to EFI clients

(defaults to 4011).
httpApiDocsDirectory Fully-qualified directory containing the API docs.
httpEndpoints Collection of http/https endpoints. See details in Setup

HTTP/HTTPS endpoint
httpFileServiceRoot Directory path for for storing uploaded files on disk.
httpFileServiceType Backend storage mechanism for file service. Currently

only FileSystem is supported.
fileServerAddress Optional. Node facing IP address of the static file server.

See Static File Service Setup.
fileServerPort Optional. Port of the static file server. See Static File

Service Setup.
fileServerPath Optional. Access path of the static file server. See Static

File Service Setup.
Continued on next page

50 Chapter 1. Contents



RackHD Documentation, Release 2.0

Table 1 – continued from previous page
Parameter Description
httpProxies Optional HTTP/HTTPS proxies list. There are 3 param-

eters for each proxy:
“localPath”/”remotePath” are optional and defaults to
“/”. A legal “localPath”/”remotePath” string must start
with slash and ends without slash, like “/mirrors”. If
“localPath” is assigned to an existing local path like
“/api/current/nodes”, proxy won’t work. Instead the
path will keep its original feature and function. “server”
is a must, both http and https servers are supported. A
legal “server” string must ends without slash like “http:
//centos.eecs.wsu.edu”. Instead “http://centos.eecs.wsu.
edu/” is illegal.
Example:
{ “server”: “http://centos.eecs.wsu.edu”, “localPath”:
“/centos” } would map http requests to local directory
/centos/ to http://centos.eecs.wsu.edu/
{ “server”: “https://centos.eecs.wsu.edu”, “re-
motePath”: “/centos” } would map http requests to
local directory / to https://centos.eecs.wsu.edu/centos/
Note: To ensure this feature works, the httpProxies need
be separately enabled for specified HTTP/HTTPS end-
point. See details in Setup HTTP/HTTPS endpoint

httpFrontendDirectory Fully-qualified directory to the web GUI content
httpStaticDirectory Fully-qualified directory to where static HTTP content

is served
maxTaskPayloadSize Maximum payload size expected through TASK runner

API callbacks from microkernel
mongo URI for accessing MongoDB. To support Mongo

Replica Set feature, URI format is, mon-
godb://[username:password@]host1[:port1][,host2[:port2],. . . [,hostN[:portN]]][/[database][?options]]

migrate The migrate setting controls the auto-migration strategy
that every time RackHD loads, the strategy should be
one of safe, alter and drop.
NOTE: It’s extremely important to set the mi-
grate to safe when working with existing databases,
otherwise, you will very likely lose data! The al-
ter and drop strategies are only recommended in
development environment. You could see detail de-
scription for each migration strategy from this link
https://github.com/balderdashy/sails-docs/blob/master/
concepts/ORM/model-settings.md#migrate
The RackHD default migration strategy is safe.

sharedKey A 32 bit base64 key encoded string
relevant for aes-256-cbc, defaults to
‘qxfO2D3tIJsZACu7UA6Fbw0avowo8r79ALzn+WeuC8M=’.
The default can be replaced by a 256 byte randomly
generated base64 key encoded string.
Example generating a key with OpenSSL:

openssl enc -aes-256-cbc -k secret -P -
→˓md sha1

Continued on next page

1.5. Running RackHD 51

http://centos.eecs.wsu.edu
http://centos.eecs.wsu.edu
http://centos.eecs.wsu.edu/
http://centos.eecs.wsu.edu/
http://centos.eecs.wsu.edu
http://centos.eecs.wsu.edu/
https://centos.eecs.wsu.edu
https://centos.eecs.wsu.edu/centos/
https://github.com/balderdashy/sails-docs/blob/master/concepts/ORM/model-settings.md#migrate
https://github.com/balderdashy/sails-docs/blob/master/concepts/ORM/model-settings.md#migrate


RackHD Documentation, Release 2.0

Table 1 – continued from previous page
Parameter Description
obmInitialDelay Delay before retrying an OBM invocation
obmRetries Number of retries to attempt before failing an OBM in-

vocation
pollerCacheSize Maximum poller entries to cache in memory
statsdPrefix Application-specific statsd metrics for debugging
syslogBindPort Port for syslog (defaults to 514).
syslogBindAddress Address for the syslog server to bind to (defaults to

‘0.0.0.0’).
tftpBindAddress Address for TFTP server to bind to (defaults to

‘0.0.0.0’).
tftpBindPort Listening port for TFTP server (defaults to 69).
tftpBindAddress File root for TFTP server to serve files (defaults to

‘./static/tftp’).
tftproot Fully-qualified directory from which static TFTP con-

tent is served
minLogLevel A numerical value for filtering the logging from

RackHD. The log levels for filtering are defined
at https://github.com/RackHD/on-core/blob/master/lib/
common/constants.js#L31-L37

logColorEnable A boolean value to toggle the colorful log output (de-
faults to false)

enableLocalHostException Set to true to enable the localhost exception, see Setup
the First User with Localhost Exception.

enableUPnP Set to true to advertise RackHD Restful API services
using SSDP (Simple Service Discovery Protocol).

ssdpBindAddress The bind address to send the SSDP advertisements on
(defaults to 0.0.0.0).

heartbeatIntervalSec Integer value setting the heartbeat send interval in sec-
onds. Setting this value to 0 will disable the heartbeat
service (defaults to 10)

wssBindAddress Address for RackHD WebSocket Service to bind to (de-
faults to ‘0.0.0.0’).

wssBindPort Listening port for RackHD WebSocket Service (defaults
to 9100).

trustedProxy Enable trust proxy in express. Populate req.ip with left
most IP address from the XForwardFor list.

discoveryGraph Injectable name for the discovery graph that should be
run against new nodes
See documentation at https://expressjs.com/en/guide/
behind-proxies.html

autoCreateObm Allow rackHD to setup IPMI OBM settings on active
dicovery by creating a new BMC user on the compute
node.

These configurations can also be overridden by setting environment variables in the process that’s running each ap-
plication, or on the command line when running node directly. For example, to override the value of amqp for the
configuration, you could use:

export amqp=amqp://another_host:5763

prior to running the relevant application.

52 Chapter 1. Contents

https://github.com/RackHD/on-core/blob/master/lib/common/constants.js#L31-L37
https://github.com/RackHD/on-core/blob/master/lib/common/constants.js#L31-L37
https://expressjs.com/en/guide/behind-proxies.html
https://expressjs.com/en/guide/behind-proxies.html


RackHD Documentation, Release 2.0

HTTPS/TLS Configuration

To use TLS, a private RSA key and X.509 certificate must be provided. On Ubuntu and Mac OS X, the openssl
command line tool can be used to generate keys and certificates.

For internal development purposes, a self-signed certificate can be used. When using a self-signed certificate, clients
must manually include a rule to trust the certificate’s authenticity.

By default, the application uses a self-signed certificate issued by Monorail which requires no configuration. Custom
certificates can also be used with some configuration.

Parameters

See the table in Configuration Parameters for information about HTTP/HTTPS configuration parameters. These
parameters beging with HTTP and HTTPS.

BMC Username and Password Configuration

A node gets discovered and the BMC IPMI comes up with a default username/password. User can automatically set
IPMI OBM settings using a default user name(‘__rackhd__’) and an auto generated password in rackHD by adding
the following to RackHD config.json:

"autoCreateObm": "true"

If a user wants to change the BMC credentials later in time, when the node has been already dis-
covered and database updated, a separate workflow located at on-taskgraph/lib/graphs/
bootstrap-bmc-credentials-setup-graph.js can be posted using Postman or Curl command.

POST: http://server-ip:8080/api/current/workflows/

add the below content in the json body for payload (example node identifier and username, password shown below)

{
"name": "Graph.Bootstrap.With.BMC.Credentials.Setup",
"options": {

"defaults": {
"graphOptions": {

"target": "56e967f5b7a4085407da7898",
"generate-pass": {

"user": "7",
"password": "7"

}
},
"nodeId": "56e967f5b7a4085407da7898"

}
}

}

By running this workflow, a boot-graph runs to bootstrap an ubuntu image on the node again and set-bmc-credentials-
graph runs the required tasks to update the BMC credentials. Below is a snippet of the ‘Bootstrap-And-Set-Credentials
graph’, when the graph is posted the node reboots and starts the discovery process

module.exports = {
friendlyName: 'Bootstrap And Set Credentials',
injectableName: 'Graph.Bootstrap.With.BMC.Credentials.Setup',
options: {

defaults: {
graphOptions: {

(continues on next page)

1.5. Running RackHD 53

http://server-ip:8080/api/current/workflows/


RackHD Documentation, Release 2.0

(continued from previous page)

target: null
},
nodeId: null

}
},
tasks: [

{
label: 'boot-graph',
taskDefinition: {

friendlyName: 'Boot Graph',
injectableName: 'Task.Graph.Run.Boot',
implementsTask: 'Task.Base.Graph.Run',
options: {

graphName: 'Graph.BootstrapUbuntu',
defaults : {

graphOptions: { }
}

},
properties: {}

}
},
{

label: 'set-bmc-credentials-graph',
taskDefinition: {

friendlyName: 'Run BMC Credential Graph',
injectableName: 'Task.Graph.Run.Bmc',
implementsTask: 'Task.Base.Graph.Run',
options: {

graphName: 'Graph.Set.Bmc.Credentials',
defaults : {

graphOptions: { }
}

},
properties: {}

},
waitOn: {

'boot-graph': 'finished'
}

},
{

label: 'finish-bootstrap-trigger',
taskName: 'Task.Trigger.Send.Finish',
waitOn: {

'set-bmc-credentials-graph': 'finished'
}

}
]

};

To remove the BMC credentials, User can run the following workflow located at on-taskgraph/lib/graphs/
bootstrap-bmc-credentials-remove-graph.js and can be posted using Postman or Curl command.

POST: http://server-ip:8080/api/current/workflows/

add the below content in the json body for payload (example node identifier and username, password shown below)

{

(continues on next page)

54 Chapter 1. Contents

http://server-ip:8080/api/current/workflows/


RackHD Documentation, Release 2.0

(continued from previous page)

"name": "Graph.Bootstrap.With.BMC.Credentials.Remove",
"options": {

"defaults": {
"graphOptions": {

"target": "56e967f5b7a4085407da7898",
"remove-bmc-credentials": {

"users": ["7","8"]
}

},
"nodeId": "56e967f5b7a4085407da7898"

}
}

}

Certificates

This section describes how to generate and install a self-signed certificate to use for testing.

Generating Self-Signed Certificates

If you already have a key and certificate, skip down to the Installing Certificates section.

First, generate a new RSA key:

openssl genrsa -out privkey.pem 2048

The file is output to privkey.pem. Keep this private key secret. If it is compromised, any corresponding certificate
should be considered invalid.

The next step is to generate a self-signed certificate using the private key:

openssl req -new -x509 -key privkey.pem -out cacert.pem -days 9999

The days value is the number of days until the certificate expires.

When you run this command, OpenSSL prompts you for some metadata to associate with the new certificate. The
generated certificate contains the corresponding public key.

Installing Certificates

Once you have your private key and certificate, you’ll need to let the application know where to find them. It is
suggested that you move them into the /opt/monorail/data folder.

mv privkey.pem /opt/monorail/data/mykey.pem
mv cacert.pem /opt/monorail/data/mycert.pem

Then configure the paths by editing httpsCert and httpKey in /opt/monorail/config.json. (See the Configuration Pa-
rameters section above).

If using a self-signed certificate, add a security exception to your client of choice. Verify the certificate by restarting
on-http and visiting https://<host>/api/current/versions.

Note: For information about OpenSSL, see the OpenSSL documentation.

1.5. Running RackHD 55

https://www.openssl.org/docs/


RackHD Documentation, Release 2.0

Setup HTTP/HTTPS endpoint

This section describes how to setup HTTP/HTTPS endpoints in RackHD. An endpoint is an instance of HTTP or
HTTPS server that serves a group of APIs. Users can choose to enable authentication or enable HTTPS for each
endpoint.

There is currently one API group defined in RackHD:

• the northbound-api-router API group. This is the API group that is used by users

[
{

"address": "0.0.0.0",
"port": 8443,
"httpsEnabled": true,
"httpsCert": "data/dev-cert.pem",
"httpsKey": "data/dev-key.pem",
"httpsPfx": null,
"proxiesEnabled": false,
"authEnabled": false,
"yamlName": ["monorail-2.0.yaml", "redfish.yaml"]

}
]

Param-
eter

Description

address IP/Interface to bind to for HTTP. Typically this is ‘0.0.0.0’
port Local port to use for HTTP. Typically, port 80 for HTTP, 443 for HTTPS
httpsEn-
abled

Toggle HTTPS

httpsCert Filename of the X.509 certificate to use for TLS. Expected format is PEM. This is optional and only
takes effect when the httpsEnabled flag is set to true

httpsKey Filename of the RSA private key to use for TLS. Expected format is PEM. This is optional and only
takes effect when the httpsEnabled flag is set to true

httpsPfx Pfx file containing the SSL cert and private key (only needed if the key and cert are omitted) This is
optional and only takes effect when the httpsEnabled flag is set to true

prox-
iesEn-
abled

A boolean value to toggle httpProxies (defaults to false)

authEn-
abled

Toggle API Authentication

yaml-
Name

A list of yaml file used to define the routes. current availabe files are momorail-2.0.yaml, and red-
fish.yaml.

Setup Taskgraph Endpoint

This section describes how to setup the taskgraph endpoint in RackHD. The taskgraph endpoint is the interface that is
used by nodes to interacting with the system

"taskGraphEndpoint": {
"address": "172.31.128.1",
"port": 9030

}

56 Chapter 1. Contents



RackHD Documentation, Release 2.0

Parameter Description
address IP/Interface that the tastgraph sevice is listeing on
port Local port that the taskgraph service is listening on

Raid Configuration

Setting up the docker image

For the correct tooling (storcli for Quanta/Intel and perccli for Dell) you will need to build the docker image using the
following steps:

(1). Add the repo https://github.com/RackHD/on-imagebuilder

(2). Refer to the Requirements section of the Readme in the on-imagebuilder repo to install latest version of docker:
https://github.com/RackHD/on-imagebuilder#requirements

(3). For Quanta/Intel storcli - https://github.com/RackHD/on-imagebuilder#oem-tools

Refer to the OEM tools section: OEM docker images raid and secure_erase require storcli_1.17.08_all.deb being
copied into raid and secure-erase under on-imagebuilder/oem. User can download it from http://docs.avagotech.com/
docs/1.17.08_StorCLI.zip

(4). For Dell PERCcli: https://github.com/RackHD/on-imagebuildera#oem-tools

Refer to the OEM tools section to download and unzip the percCLI package and derive a debian version using
‘alien’ There is no .deb version perccli tool. User can download .rpm perccli from https://downloads.dell.com/
FOLDER02444760M/1/perccli-1.11.03-1_Linux_A00.tar.gz unzip the package and then use alien to get a .deb version
perccli tool as below:

sudo apt-get install alien
sudo alien -k perccli-1.11.03-1.noarch.rpm

OEM docker images dell_raid and secure_erase require perccli_1.11.03-1_all.deb being copied into dell-raid and
secure-erase under on-imagebuilder/oem.

(5). Build the docker image.

#This creates the dell.raid.docker.tar.xz image
cd on-imagebuilder/oem/dell-raid
sudo docker build -t rackhd/micro .
sudo docker save rackhd/micro | xz -z > dell.raid.docker.tar.xz

#This creates the raid.docker.tar.xz image
cd on-imagebuilder/oem/raid
sudo docker build -t rackhd/micro .
sudo docker save rackhd/micro | xz -z > raid.docker.tar.xz

(6). Copy the image dell.raid.docker.tar.xz or raid.docker.tar.xz to /on-http/static/http/common

(7). Restart the RackHD service

Posting the Workflow

POST: http://server-ip:8080/api/2.0/nodes/:id/workflows/?name=Graph.Bootstrap.Megaraid.Configure

add the below example content in the json body for payload

1.5. Running RackHD 57

https://github.com/RackHD/on-imagebuilder
https://github.com/RackHD/on-imagebuilder#requirements
https://github.com/RackHD/on-imagebuilder#oem-tools
http://docs.avagotech.com/docs/1.17.08_StorCLI.zip
http://docs.avagotech.com/docs/1.17.08_StorCLI.zip
https://github.com/RackHD/on-imagebuildera#oem-tools
https://downloads.dell.com/FOLDER02444760M/1/perccli-1.11.03-1_Linux_A00.tar.gz
https://downloads.dell.com/FOLDER02444760M/1/perccli-1.11.03-1_Linux_A00.tar.gz
http://server-ip:8080/api/2.0/nodes/:id/workflows/?name=Graph.Bootstrap.Megaraid.Configure


RackHD Documentation, Release 2.0

{
"options": {

"config-raid":{
"ssdStoragePoolArr":[],
"ssdCacheCadeArr":[{

"enclosure": 252,
"type": "raid0",
"drives":"[0]"

}],
"controller": 0,
"path":"/opt/MegaRAID/storcli/storcli64",
"hddArr":[{

"enclosure": 252,
"type": "raid0",
"drives":"[1]"

},
{

"enclosure": 252,
"type": "raid1",
"drives":"[4,5]"

}]
}

}
}

Notes: ssdStoragePoolArr, ssdCacheCadeArr, hddArr should be passed as empty arrays if they don’t need to be
configure like the “ssdStoragePoolArr” array in the example payload above is an empty array. For CacheCade (ssd-
CacheCadeArr) to work the controller should have the ability to configure it.

Payload Definition

The drive information for payload can be gathered from the node catalogs using the api below:

GET /api/current/nodes/<id>/catalogs/<source>

Or from the node’s microkernel: (Note: the workflow does not stop in the micro-kernel. In order to be able to stop in
the microkernel the workflow needs to be updated to remove the last two tasks.)

{
label: 'refresh-catalog-megaraid',
taskName: 'Task.Catalog.megaraid',
waitOn: {

'config-raid': 'succeeded'
}

},
{

label: 'final-reboot',
taskName: 'Task.Obm.Node.Reboot',
waitOn: {

'refresh-catalog-megaraid': 'finished'
}

}

The elements in the arrays represent the EID of the drives (run this command in the micro-kernel storcli 64 /c0 show)

58 Chapter 1. Contents



RackHD Documentation, Release 2.0

Physical Drives = 6 PD LIST : ======= ------------------------------------------------
→˓-------------------------

EID:Slt DID State DG Size Intf Med SED PI SeSz Model Sp ------------------------------
→˓-------------------------------------------

252:0 0 Onln 0 372.093 GB SAS SSD N N 512B HUSMM1640ASS200 U

252:1 4 Onln 5 1.090 TB SAS HDD N N 512B HUC101212CSS600 U

252:2 3 Onln 1 1.090 TB SAS HDD N N 512B HUC101212CSS600 U

252:4 5 Onln 2 1.090 TB SAS HDD N N 512B HUC101212CSS600 U

252:5 2 Onln 3 1.090 TB SAS HDD N N 512B HUC101212CSS600 U

252:6 1 Onln 4 1.090 TB SAS HDD N N 512B HUC101212CSS600 U

“hddArr”: is the array of hard drives that will take part of the storage pool “ssdStoragePoolArr”: is the array of solid
state drives that will take part of the storage pool “ssdCacheCadeArr”: is the array of hard drives that will take part of
CacheCade

Results

After the workflow runs successfully, you should be able to see the newly created virtual disks either from the catalogs
or from the monorail micro-kernel

monorail@monorail-micro:~$ sudo /opt/MegaRAID/storcli/storcli64 /c0/vall show Virtual
→˓Drives : ==============-------------------------------------------------------------
→˓- DG/VD TYPE State Access Consist Cache Cac sCC Size Name --------------------------
→˓-------------------------------------
0/0 Cac0 Optl RW Yes NRWBD - ON 372.093 GB
1/1 RAID0 Optl RW Yes RWTD - ON 1.090 TB
2/2 RAID0 Optl RW Yes RWTD - ON 1.090 TB
3/3 RAID0 Optl RW Yes RWTD - ON 1.090 TB
4/4 RAID0 Optl RW Yes RWTD - ON 1.090 TB
5/5 RAID0 Optl RW Yes RWTD - ON 1.090 TB

1.5.4 Security

Authentication

Table of Contents

• Authentication

– Enable Authentication

– Setup the First User with Localhost Exception

– Setup the Token

– Login to Get a Token

1.5. Running RackHD 59



RackHD Documentation, Release 2.0

– Accessing API Using the Token

– Invalidating all Tokens

– Creating a Redfish Session

– Deleting a Redfish Session

When ‘authEnabled’ is set to ‘true’ in the config.json file for an endpoint, authentication will be needed to access
the APIs that are defined within that endpoint. Enabling authentication will also enable authorization control when
accessing API 2.0 and Redfish APIs.

This section describes how to access APIs that need authentication.

Enable Authentication

Please refer to Setup HTTP/HTTPS endpoint on how to setup endpoints. Simply put, the following endpoint configu-
ration will be a good start.

"httpEndpoints": [
{

"address": "0.0.0.0",
"port": 8443,
"httpsEnabled": true,
"proxiesEnabled": false,
"authEnabled": true,
"routers": "northbound-api-router"

},
{

"address": "172.31.128.1",
"port": 8080,
"httpsEnabled": false,
"proxiesEnabled": false,
"authEnabled": false,
"routers": "southbound-api-router"

}
]

The first endpoint represents an HTTPS service listening at port 8443 that serves northbound APIs, which are APIs
being called by users. Note that authEnabled is set to true means that authentication is needed to access northbound
APIs.

The second endpoint represents an HTTP service listening at port 8080 that serves southbound APIs, which are called
by nodes interacting with the system. Authentication should NOT be enabled for southbound APIs in order for PXE
to work fine.

Note: although there is no limitation to enable authentication together with insecure HTTP (httpsEnabled = false) for
an endpoint, it is strongly not recommended to do so. Sending user credentials over unencrypted HTTP connection
exposes users to the risk of malicious attacks.

Setup the First User with Localhost Exception

The localhost exception permits unauthenticated access to create the first user in the system. With authentication
enabled, the first user can be created by issuing a POST to the /users API only if the API is issued from localhost. The
first user must be assigned a role with privileges to create other users, such as an Administrator role.

Here is an example of creating an initial ‘admin’ user with a password of ‘admin123’.

60 Chapter 1. Contents



RackHD Documentation, Release 2.0

curl -ks -X POST -H "Content-Type:application/json" https://localhost:8443/api/
→˓current/users -d '{"username": "admin", "password": "admin123", "role":
→˓"Administrator"}' | python -m json.tool
{

"role": "Administrator",
"username": "admin"

}

The localhost exception can be disabled by setting the configuration value “enableLocalHostException” to false. The
default value of “enableLocalHostException” is true.

Setup the Token

There are few settings needed for generating the token.

Parameter Description
authTo-
kenSecret

The secret used to generate the token.

authToken-
ExpireIn

The time interval in second after which the token will expire, since the time the token is generated.
Token will never expire if this value is set to 0.

Login to Get a Token

Following the endpoint settings, a token is needed to access any northbound APIs, except the /login API.

Posting a request to /login with username and password in the request body will get a token returned from RackHD,
which will be used to access any other northbound APIs.

Here is an example of getting a token using curl.

curl -k -X POST -H "Content-Type:application/json" https://localhost:8443/login -d '{
→˓"username":"admin", "password":"admin123" }' | python -m json.tool
% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed
100 204 100 160 100 44 3315 911 --:--:-- --:--:-- --:--:-- 3333
{

"token": "eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.
→˓eyJ1c2VyIjoiYWRtaW4iLCJpYXQiOjE0NTU2MTI5MzMsImV4cCI6MTQ1NTY5OTMzM30.glW-
→˓IvWYDBCfDZ6cS_6APoty22PE_Ir5L1mO-YqO3eE"
}

A 401 unauthorized response with ‘Invalid username or password’ message will be returned if:

• Username or password is wrong in the http request body

For example:

curl -k -X POST -H "Content-Type:application/json" https://localhost:8443/login -d '{
→˓"username":"admin", "password":"admin123balabala" }' | python -m json.tool
% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed
100 94 100 42 100 52 909 1125 --:--:-- --:--:-- --:--:-- 1130
{

"message": "Invalid username or password"
}

1.5. Running RackHD 61



RackHD Documentation, Release 2.0

Accessing API Using the Token

There are three ways of using the token in a http/https request:

• send the token as a query string

• send the token as a query header

• send the token as request body

Example of sending the token as query string:

curl -k -H "Content-Type:application/json" https://localhost:8443/api/1.1/config?auth_
→˓token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.
→˓eyJ1c2VyIjoiYWRtaW4iLCJpYXQiOjE0NTU2MTI5MzMsImV4cCI6MTQ1NTY5OTMzM30.glW-
→˓IvWYDBCfDZ6cS_6APoty22PE_Ir5L1mO-YqO3eE | python -mjson.tool
% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed
100 1919 100 1919 0 0 81114 0 --:--:-- --:--:-- --:--:-- 83434
{

"$0": "index.js",
...
"tftpRoot": "./static/tftp"

}

Example of sending the token as query header.

Note: the header should be ‘authorization’ and the token should start will ‘JWT’ followed by a whitespace and then
the token itself.

curl -k -H "Content-Type:application/json" https://localhost:8443/api/1.1/config --
→˓header 'authorization: JWT eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.
→˓eyJ1c2VyIjoiYWRtaW4iLCJpYXQiOjE0NTU2MTI5MzMsImV4cCI6MTQ1NTY5OTMzM30.glW-
→˓IvWYDBCfDZ6cS_6APoty22PE_Ir5L1mO-YqO3eE' | python -mjson.tool
% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed
100 1919 100 1919 0 0 99k 0 --:--:-- --:--:-- --:--:-- 104k
{

"$0": "index.js",
...
"tftpRoot": "./static/tftp"

}

Example of sending the token as query body:

curl -k -X POST -H "Content-Type:application/json" https://localhost:8443/api/1.1/
→˓lookups -d '{"auth_token":"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.
→˓eyJ1c2VyIjoiYWRtaW4iLCJpYXQiOjE0NTU2MTI5MzMsImV4cCI6MTQ1NTY5OTMzM30.glW-
→˓IvWYDBCfDZ6cS_6APoty22PE_Ir5L1mO-YqO3eE","macAddress":"aa:bb:cc:dd:ee:ff",
→˓"ipAddress":"192.168.1.1", "node":"123453134" }' | python -m json.tool
% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed
100 599 100 353 100 246 19932 13890 --:--:-- --:--:-- --:--:-- 20764
{

"auth_token": "eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.
→˓eyJ1c2VyIjoiYWRtaW4iLCJpYXQiOjE0NTU2MTI5MzMsImV4cCI6MTQ1NTY5OTMzM30.glW-
→˓IvWYDBCfDZ6cS_6APoty22PE_Ir5L1mO-YqO3eE",

"createdAt": "2016-02-16T09:07:29.995Z",
"id": "56c2e6d140408f6a2d17cb23",

(continues on next page)

62 Chapter 1. Contents



RackHD Documentation, Release 2.0

(continued from previous page)

"ipAddress": "192.168.1.1",
"macAddress": "aa:bb:cc:dd:ee:ff",
"node": "123453134",
"updatedAt": "2016-02-16T09:07:29.995Z"

}

A 401 unauthorized response with a ‘invalid signature’ message will be returned if:

• Invalid token found in query string, header or request body

For example:

curl -k -H "Content-Type:application/json" https://localhost:8443/api/1.1/config --
→˓header 'authorization: JWT eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.
→˓eyJ1c2VyIjoiYWRtaW4iLCJpYXQiOjE0NTU2MTI5MzMsImV4cCI6MTQ1NTY5OTMzM30.glW-
→˓IvWYDBCfDZ6cS_6APoty22PE_Ir5L1mO-YqO3eE-----------' | python -mjson.tool
% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed
100 31 100 31 0 0 1806 0 --:--:-- --:--:-- --:--:-- 1823
{

"message": "invalid signature"
}

A 401 bad request response with a ‘No auth token’ message will be returned if:

• Empty token in request body, ie, auth_token=”” or authorization=”“

• No auth_token key in query string or request body, or

• No authorization key in request header

For example:

curl -k -H "Content-Type:application/json" https://localhost:8443/api/1.1/config |
→˓python -mjson.tool
→˓ % Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed
100 27 100 27 0 0 1644 0 --:--:-- --:--:-- --:--:-- 1687
{

"message": "No auth token"
}

Invalidating all Tokens

All active tokens can be invalidated by changing the authTokenSecret property in the RackHD configuration file:

config.json

Edit config.json, modify the value of authTokenSecret, and save the file. Restart the on-http service. Any previously
generated tokens, signed with the old secret, will now be invalid.

Creating a Redfish Session

Posting a request to the Redfish Session Service with UserName and Password in the request body will get a token
returned from the Redfish service which can be used to access any other Redfish APIs. The token is returned in the
‘X-Auth-Token’ header in the response object.

1.5. Running RackHD 63

https://github.com/RackHD/RackHD/blob/master/packer%2Fansible%2Froles%2Fmonorail%2Ffiles%2Fconfig.json


RackHD Documentation, Release 2.0

Here is an example of getting a token using curl.

curl -vk -X POST -H "Content-Type:application/json" https://localhost:8443/redfish/v1/
→˓SessionService/Sessions -d '{"UserName":"admin", "Password":"admin123" }' | python -
→˓m json.tool
< HTTP/1.1 200 OK
< X-Powered-By: Express
< Access-Control-Allow-Origin: *
< X-Auth-Token: eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.
→˓eyJ1c2VyIjoiYWRtaW4iLCJpZCI6ImNlYjk0MzIzLTQyZDYtNGM3MC05ZDIxLTEwNWYyYThlNWNjOCIsImlhdCI6MTQ3MzcwNzM5OCwiZXhwIjoxNDczNzkzNzk4fQ.
→˓EpxRI911dS25-yr3CiSI-RzvrgM9JYioQUqdKq6HQ1k
< Content-Type: application/json; charset=utf-8
< Content-Length: 294
< ETag: W/"126-K9SNCTT10D9033EnNBAPcQ"
< Date: Mon, 12 Sep 2016 19:09:58 GMT
< Connection: keep-alive
<
{ [data not shown]
100 338 100 294 100 44 4785 716 --:--:-- --:--:-- --:--:-- 4819

* Connection #0 to host localhost left intact
{

"@odata.context": "/redfish/v1/$metadata#SessionService/Sessions/Members/$entity",
"@odata.id": "/redfish/v1/SessionService/Sessions",
"@odata.type": "#Session.1.0.0.Session",
"Description": "User Session",
"Id": "ceb94323-42d6-4c70-9d21-105f2a8e5cc8",
"Name": "User Session",
"Oem": {},
"UserName": "admin"

}

A 401 unauthorized response will be returned if:

• Username or password is wrong in the http request body

For example:

curl -vk -X POST -H "Content-Type:application/json" https://localhost:8443/redfish/v1/
→˓SessionService/Sessions -d '{"UserName":"admin", "Password":"bad" }' | python -m
→˓json.tool
% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed
< HTTP/1.1 401 Unauthorized
< X-Powered-By: Express
< Access-Control-Allow-Origin: *
< Content-Type: text/html; charset=utf-8
< Content-Length: 12
< ETag: W/"c-4G0bpw8TMen5oRPML4h9Pw"
< Date: Mon, 12 Sep 2016 19:11:33 GMT
< Connection: keep-alive
<
{ [data not shown]
100 56 100 12 100 44 195 716 --:--:-- --:--:-- --:--:-- 721

* Connection #0 to host localhost left intact
No JSON object could be decoded

Once the X-Auth-Token is acquired, it can be included in all future Redfish requests by adding a X-Auth-Token header
to the request object:

64 Chapter 1. Contents



RackHD Documentation, Release 2.0

curl -k -H "Content-Type:application/json" -H 'X-Auth-
→˓Token:eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.
→˓eyJ1c2VyIjoiYWRtaW4iLCJpZCI6ImNlYjk0MzIzLTQyZDYtNGM3MC05ZDIxLTEwNWYyYThlNWNjOCIsImlhdCI6MTQ3MzcwNzM5OCwiZXhwIjoxNDczNzkzNzk4fQ.
→˓EpxRI911dS25-yr3CiSI-RzvrgM9JYioQUqdKq6HQ1k' https://localhost:8443/redfish/v1/
→˓SessionService/Sessions | python -m json.tool
% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed
100 784 100 784 0 0 27303 0 --:--:-- --:--:-- --:--:-- 28000
{

"@odata.context": "/redfish/v1/$metadata#SessionService/Sessions/$entity",
"@odata.id": "/redfish/v1/SessionService/Sessions",
"@odata.type": "#SessionCollection.SessionCollection",
"Members": [

{
"@odata.id": "/redfish/v1/SessionService/Sessions/ceb94323-42d6-4c70-9d21-

→˓105f2a8e5cc8"
}

],
"Members@odata.count": 1,
"Name": "Session Collection",
"Oem": {}

}

Deleting a Redfish Session

To invalidate a Redfish session token, the respective session instance should be deleted:

curl -k -X DELETE -H "Content-Type:application/json" -H 'X-Auth-
→˓Token:eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.
→˓eyJ1c2VyIjoiYWRtaW4iLCJpZCI6ImNlYjk0MzIzLTQyZDYtNGM3MC05ZDIxLTEwNWYyYThlNWNjOCIsImlhdCI6MTQ3MzcwNzM5OCwiZXhwIjoxNDczNzkzNzk4fQ.
→˓EpxRI911dS25-yr3CiSI-RzvrgM9JYioQUqdKq6HQ1k' https://localhost:8443/redfish/v1/
→˓SessionService/Sessions/ceb94323-42d6-4c70-9d21-105f2a8e5cc8 | python -m json.tool
% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed
0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0

No JSON object could be decoded

Once the session has been deleted, the session token will no longer be valid:

curl -vk -H "Content-Type:application/json" -H 'X-Auth-
→˓Token:eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.
→˓eyJ1c2VyIjoiYWRtaW4iLCJpZCI6ImNlYjk0MzIzLTQyZDYtNGM3MC05ZDIxLTEwNWYyYThlNWNjOCIsImlhdCI6MTQ3MzcwNzM5OCwiZXhwIjoxNDczNzkzNzk4fQ.
→˓EpxRI911dS25-yr3CiSI-RzvrgM9JYioQUqdKq6HQ1k' https://localhost:8443/redfish/v1/
→˓SessionService/Sessions | python -m json.tool
< HTTP/1.1 401 Unauthorized
< X-Powered-By: Express
< Access-Control-Allow-Origin: *
< Content-Type: application/json; charset=utf-8
< Content-Length: 2
< ETag: W/"2-mZFLkyvTelC5g8XnyQrpOw"
< Date: Mon, 12 Sep 2016 20:04:32 GMT
< Connection: keep-alive
<
{ [data not shown]
100 2 100 2 0 0 64 0 --:--:-- --:--:-- --:--:-- 66

(continues on next page)

1.5. Running RackHD 65



RackHD Documentation, Release 2.0

(continued from previous page)

* Connection #0 to host localhost left intact
{}

Authorization

Table of Contents

• Authorization

– Privileges

* Built-in Privileges

– Roles

* Built-in Roles

* API Commands for Roles

API access control is enabled when authentication is enabled. The Access Control is controlled per API and per API
method. A GET on an API can have different access control than a POST on the same API.

Privileges

A privilege grants access to an API resource and an action to perform on that resource. For example, a ‘read’ privilege
may grant GET access on a set of APIs, but may not also grant POST/PUT/PATCH/DELETE access to those same
APIs. To issue POST/PUT/PATCH/DELETE methods to an API, a ‘write’ privilege may be required.

Built-in Privileges

The following Privileges are built-in to RackHD:

Privilege Description
Read Used to specify an ability to read data from an API
Write Used to specify an ability to write data to an API
Login Used to specify an ability to login to RackHD
ConfigureUsers Used to specify an ability to configure aspects of other users
ConfigureSelf Used to specify an ability to configure aspects of the logged in user
ConfigureManager Used to specify an ability to configure Manager resources
ConfigureComponents Used to specify an ability to configure components managed by this service

Roles

A role grants a set of privileges. Each privilege is specified explicitly within the role. Authenticated users have a single
role assigned to them.

66 Chapter 1. Contents



RackHD Documentation, Release 2.0

Built-in Roles

The following Roles are built-in to RackHD:

Role Description
Administrator Possess all built-in privileges
ReadOnly Possess Read, Login and ConfigureSelf privileges
Operator Possess Login, ConfigureComponents, and ConfigureSelf privileges

API Commands for Roles

The following API commands can be used to view, create, modify and delete roles.

Get a list of all roles currently stored in the system

GET /api/current/roles

Get information about a specified role.

GET /api/current/roles/<name>

Create a new role and store it.

POST /api/current/roles

{
"privileges": [

<privilege1>,
<privilege2>

]
"role": "<name>"

}

Modify the properties of a specified role.

PATCH /api/current/roles/<name>

{
"privileges": [

<privilege1>,
<privilege2>

]
}

Delete a specified role.

DELETE /api/current/roles/<name>

1.6 RackHD API, Data Model, Feature

1.6.1 RackHD API Overview

1.6. RackHD API, Data Model, Feature 67



RackHD Documentation, Release 2.0

Table of Contents

• RackHD API Overview

– Starting and Stopping the API Server

– Generating API Documentation

– RackHD Client Libraries

– Examples using the python client library

– Using Pagination

Our REST based API is the abstraction layer for the low-level management tasks that are performed on hardware
devices, and information about those devices. For example, when a compute server is “discovered” (see Software
Architecture for more details on this process), the information about that server is expressed as nodes and catalogs in
the RackHD API. When you want to re-image that compute node, the RackHD API is used to activate a workflow
containing the tasks that are appropriate to doing that function.

The RackHD API can be used to manage nodes, catalogs, workflows, tasks, templates, pollers, and other entities. For
the complete list of functions, generate the RackHD API documentation as described below or download the latest
from https://bintray.com/rackhd/docs/apidoc#files.

List All Nodes

curl http://<server>:8080/api/current/nodes | python -mjson.tool

Get the Active Workflow

curl http://<server>:8080/api/current/nodes/<identifier>/workflows/?active=true |
→˓python -mjson.tool

Starting and Stopping the API Server

The API server runs by default. Use the following commands to stop or start the API server.

Action Command
Stop API server sudo service on-http stop
Start API server sudo service on-http start

Generating API Documentation

You can generate an HTML version of the API documentation by cloning the on-http repository and running the
following command.

$ git clone https://github.com/RackHD/on-http
$ cd on-http
$ npm install
$ npm run apidoc
$ npm run taskdoc

The default and example quick start build that we describe in Hands-On vLab has the API docs rendered and embedded
within that instance for easy use, available at http://[IP ADDRESS OF VM]:8080/docs/ for the 1.1 API
documentation, and http://[IP ADDRESS OF VM]:8080/swagger-ui/ for the current (2.0) and Redfish
API documentation.

68 Chapter 1. Contents

https://bintray.com/rackhd/docs/apidoc#files


RackHD Documentation, Release 2.0

RackHD Client Libraries

The 2.0 API generates a swagger API definition file that can be used to create client libraries with swagger. To create
this file locally, you can check out the on-http library and run the commands:

npm install
npm run apidoc

The resulting files will be in build/swagger-doc and will be pdf files that are documentation for the 2.0 API
(rackhd-api-2.1.0.pdf) and the Redfish API (rackhd-redfish-v1-1.1.1.pdf).

To create a client library you can run the command:

npm run client -- -l <language>

Where the language you input can currently be python, go, or java. Go is generated using go-swagger and python
and java are generated using swagger-codegen. This command will generate client libraries for the 2.0 API and
Redfish API and will be in the saved in the directories on-http/on-http-api2.0` and ``on-http/
on-http-redfish-1.0 , respectively.

You can also use the swagger generator online tool to generate a client zip bundle for a variety of languages, including
python, Java, javascript, ruby, scala, php, and more.

Examples using the python client library

Getting a list of nodes

from on_http import NodesApi, ApiClient, Configuration

config = Configuration()
config.debug = True
config.verify_ssl = False

client = ApiClient(host='http://localhost:9090',header_name='Content-Type',header_
→˓value='application/json')

nodes = NodesApi(api_client=client)
nodes.api2_0_nodes_get()
print client.last_response.data

Deprecated 1.1 API - Getting a list of nodes:

from on_http import NodesApi, ApiClient, Configuration

config = Configuration()
config.debug = True
config.verify_ssl = False

client = ApiClient(host='http://localhost:9090',header_name='Content-Type',header_
→˓value='application/json')
nodes = NodesApi(api_client=client)
nodes.api1_1_nodes_get()
print client.last_response.data

Or the same asynchronously (with a callback):

1.6. RackHD API, Data Model, Feature 69

http://swagger.io
https://generator.swagger.io


RackHD Documentation, Release 2.0

def cb_func(resp):
print 'GET /nodes callback!', resp

thread = nodes.api2_0_nodes_get(callback=cb_func)

Deprecated 1.1 API - Or the same asynchronously (with a callback):

def cb_func(resp):
print 'GET /nodes callback!', resp

thread = nodes.api1_1_nodes_get(callback=cb_func)

Using Pagination

The RackHD 2.0 /nodes, /pollers, and /workflows APIs support pagination using $skip and $top query
parameters.

Parame-
ter

Description

$skip An integer indicating the number of items that should be skipped starting with the first item in the
collection.

$top An integer indicating the number of items that should be included in the response.

These parameters can be used individually or combined to display any subset of consecutive resources in the collection.

Here is an example request using $skip and $top to get get the second page of nodes with four items per page.

curl http://localhost:8080/api/current/nodes?$skip=4&$top=4

RackHD will add a link header to assist in traversing a large collection. Links will be added if either $skip or $top
is used and the size of the collection is greater than the number of resources displayed (i.e. the collection cannot fit
on one page). If applicable, links to first, last, next, and previous pages will be included in the header. The next and
previous links will be omitted for the last and first pages respectively.

Here is an example link header from a collection containing 1000 nodes.

</api/current/nodes?$skip=0&$top=4>; rel="first",
</api/current/nodes?$skip=1004&$top=4>; rel="last",
</api/current/nodes?$skip=0&$top=4>; rel="prev",
</api/current/nodes?$skip=8&$top=4>; rel="next"

1.6.2 Data Model Overview

Together with API, RackHD creates a set of data elements to abstract the elements and properties of the real world data
center management and orchestration. To be familar with RackHD data model could help you to better understand
how to use RackHD APIs.

70 Chapter 1. Contents



RackHD Documentation, Release 2.0

RackHD
Term

Definition

Node Nodes are the elements that RackHD manages - compute servers, switches, etc. Nodes typically have at
least one catalog, and can have Pollers and graphs assigned to or working against that node.

Cata-
log

Catalogs are free form data structures with information about the nodes. Catalogs are created during ‘dis-
covery’ workflows, and present information that can be requested via API and is available to workflows
to operate against.

Poller Pollers are free form data structures which RackHD periodically collects from nodes through various
source like IPMI, SNMP .etc

OBM A data structures that represents the Out-of-Band management settings and operations associated with
the node. A node can have multiple OBMs.

IBM A data structures that represents the In-Band management settings and operations associated with the
node such as ssh, etc.

SKU Represents a specific model of hardware which can be identified through a set of rules.
Tag Provide a method to categorize nodes into group based on data present in node’s catalog or manually

assigned.
Work-
flow

A data strcuture specifies the order in which tasks should run and provides any context and/or option
values to pass these functions.

Task A data structure represents a unit of work with data and logic that allows it to be included and run within
a workflow.

Job A data structure represents a lowest entity to execute acual work passed from workflow and task.

1.6.3 Microkernel image

Table of Contents

• Microkernel image

– Requirements

– Bootstrap Process

– Building Images

– How To Login Microkernel

RackHD utilizes RancherOS booted in RAM and a customized docker image run in RancherOS to perform various
operations such as node discovery and firmware management.

The on-imagebuilder repository contains a set of scripts that uses Docker to build docker images that run in RancherOS,
primarily for use with the on-taskgraph workflow engine.

Requirements

• Docker

Bootstrap Process

The images produced by these scripts are intended to be netbooted and run in RAM. The typical flow for how these
images are used/booted is this:

• Netboot RacherOS (kernel and initrd) via PXE/iPXE

1.6. RackHD API, Data Model, Feature 71

https://rancher.com/rancher-os
https://github.com/rackhd/on-imagebuilder
https://www.docker.com
https://github.com/rackhd/on-taskgraph


RackHD Documentation, Release 2.0

• The custom cloud-config file requests a rackhd/micro docker image from the boot server.

• It then starts a container with full container capabilities using the rackhd/micro docker image.

Building Images

Instructions for building images, can be found in the on-imagebuilder README.

How To Login Microkernel

By default, RackHD has a workflow to let users login RancherOS based microkernel to debug. The workflow name is
Graph.BootstrapRancher.

curl -X POST -H 'Content-Type: application/json' <server>/api/current/nodes/
→˓<identifier>/workflows?name=Graph.BootstrapRancher

When this workflow is running, it will set node to PXE boot, then reboot the node. The node will boot into microkernel,
finally you could SSH login node’s microkernel from the RackHD server. The node’s IP address could be retrieved
from ‘GET /lookups’ API like below, the SSH username:password is rancher:monorail.

curl <server>/api/current/lookups?q=<identifier>

1.6.4 Nodes

Table of Contents

• Nodes

– Defining Nodes

– API Commands for Nodes

– Node Tags

– Node Relations

Nodes are the elements that RackHD manages - compute servers, switches, etc. Nodes typically have at least one
catalog, and can have Pollers and Workflows assigned to or working against that node.

Defining Nodes

Nodes are defined via a JSON definition that conform to this schema:

• id (string): unique identifier for the node

• type (string): a human readable name for the graph

• name (string): a unique name used by the system and the API to refer to the graph

• autodiscover (boolean):

• sku (string): the SKU ‘id’ that has been matched from the SKU workflow task

• createdAt (string): ISO8601 date string of time resource was created

• updatedAt (string): ISO8601 date string of time resource was last updated

72 Chapter 1. Contents

https://github.com/RackHD/on-imagebuilder/blob/master/README.md


RackHD Documentation, Release 2.0

• identifiers (array of strings): a list of strings that make up alternative identifiers for the node

• obms (array of objects): a list of objects that define out-of-band management access mechanisms

• relations (array of objects): a list of relationship objects

API Commands for Nodes

The following are common API commands that can be used when running the on-http process.

Get Nodes

GET /api/current/nodes

curl <server>/api/current/nodes

Get Specific Node

GET /api/current/nodes/<id>

curl <server>/api/current/nodes/<id>

Sample switch node after Discovery

{
"type":"switch",
"name":"nodeName",
"autoDiscover":true,
"service": "snmp-ibm-service",
"config": {

"host": "10.1.1.3"
},
"createdAt":"2015-07-27T22:03:45.353Z",
"updatedAt":"2015-07-27T22:03:45.353Z",
"id":"55b6aac1024fd1b349afc145"

}

Sample compute node after Discovery

{
"autoDiscover": false,
"catalogs": [],
"createdAt": "2015-11-30T21:37:18.441Z",
"id": "565cc18ec3f522fe51620fa2",
"identifiers": [

"08:00:27:27:eb:12"
],
"name": "08:00:27:27:eb:12",
"obms": [

{
"ref": "/api/2.0/obms/58806bb776fab9d82b831e52",
"service": "noop-obm-service"

}
],
"relations": [

{
"relationType": "enclosedBy",

(continues on next page)

1.6. RackHD API, Data Model, Feature 73



RackHD Documentation, Release 2.0

(continued from previous page)

"targets": [
"565cc1d2807f92fc51a7c9c5"

]
}

],
"sku": "565cb91669aa70ab450da9dd",
"type": "compute",
"updatedAt": "2015-11-30T21:38:26.755Z",
"workflows": []

}

List all the (latest) catalog data associated with a node

GET /api/current/nodes/<id>/catalogs

curl <server>/api/current/nodes<id>/catalogs

To retrieve a specific catalog source for a node

GET /api/current/nodes/<id>/catalogs/<source>

curl <server>/api/current/nodes<id>/catalogs/<source>

Sample Output:

{
"createdAt": "2015-11-30T21:37:49.696Z",
"data": {

"BIOS Information": {
"Address": "0xE0000",
"Characteristics": [

"ISA is supported",
"PCI is supported",
"Boot from CD is supported",
"Selectable boot is supported",
"8042 keyboard services are supported (int 9h)",
"CGA/mono video services are supported (int 10h)",
"ACPI is supported"

],
"ROM Size": "128 kB",
"Release Date": "12/01/2006",
"Runtime Size": "128 kB",
"Vendor": "innotek GmbH",
"Version": "VirtualBox"

},
"Base Board Information": {

"Asset Tag": "Not Specified",
"Chassis Handle": "0x0003",
"Contained Object Handles": "0",
"Features": [

"Board is a hosting board"
],
"Location In Chassis": "Not Specified",
"Manufacturer": "Oracle Corporation",
"Product Name": "VirtualBox",
"Serial Number": "0",

(continues on next page)

74 Chapter 1. Contents



RackHD Documentation, Release 2.0

(continued from previous page)

"Type": "Motherboard",
"Version": "1.2"

},
"Chassis Information": {

"Asset Tag": "Not Specified",
"Boot-up State": "Safe",
"Lock": "Not Present",
"Manufacturer": "Oracle Corporation",
"Power Supply State": "Safe",
"Security Status": "None",
"Serial Number": "Not Specified",
"Thermal State": "Safe",
"Type": "Other",
"Version": "Not Specified"

},
"Inactive": [

{},
{},
{}

],
"OEM Strings": {

"String 1": "vboxVer_5.0.10",
"String 2": "vboxRev_104061"

},
"OEM-specific Type": {

"Header and Data": [
"80 08 08 00 E7 7D 21 00"

]
},
"System Information": {

"Family": "Virtual Machine",
"Manufacturer": "innotek GmbH",
"Product Name": "VirtualBox",
"SKU Number": "Not Specified",
"Serial Number": "0",
"UUID": "992DA874-C028-4CDD-BB06-C86D525A7056",
"Version": "1.2",
"Wake-up Type": "Power Switch"

}
},
"id": "565cc1ad807f92fc51a7c9bf",
"node": "565cc18ec3f522fe51620fa2",
"source": "dmi",
"updatedAt": "2015-11-30T21:37:49.696Z"

}

Node Tags

Add a tag to a node

PATCH /api/current/nodes/<id>/tags

curl -H "Content-Type: application/json" -X PATCH -d '{ "tags": [<list of tags>]}'
→˓<server>/api/current/nodes/<id>/tags

List tags for a node

1.6. RackHD API, Data Model, Feature 75



RackHD Documentation, Release 2.0

GET /api/current/nodes/<id>/tags

curl <server>/api/current/nodes/<id>/tags

Delete a tag from a node

DELETE /api/current/nodes/<id>/tags/<tagname>

curl -X DELETE <server>/api/current/nodes/<id>/tags/<tagname>

Node Relations

List relations for a node

GET <server>/api/current/nodes/<id>/relations

curl <server>/api/current/nodes/<id>/relations

Sample response:

[
{

"relationType": "contains",
"targets": [

"57c0d980851053795fdc7bcf",
"57c0d6bd851053795fdc7bc4"

]
}

]

Add relations to a node

PUT <server>/api/current/nodes/<id>/relations

curl -H "Content-Type: application/json" -X PUT -d '{ <relationType>: [<list of
→˓targets>]}' <server>/api/2.0/nodes/<id>/relations

Sample request body:

{
"contains": ["57c0d980851053795fdc7bcf", "57c0d6bd851053795fdc7bc4"]

}

Sample response body:

[
{

"autoDiscover": false,
"createdAt": "2016-08-30T18:39:57.819Z",
"name": "demoRack",
"relations": [

{
"relationType": "contains",
"targets": [

(continues on next page)

76 Chapter 1. Contents



RackHD Documentation, Release 2.0

(continued from previous page)

"57c0d980851053795fdc7bcf",
"57c0d6bd851053795fdc7bc4"

]
}

],
"tags": [],
"type": "rack",
"updatedAt": "2016-08-30T21:07:11.717Z",
"id": "57c5d2fd64bda4e679146530"

},
{

"autoDiscover": false,
"createdAt": "2016-08-27T00:06:24.784Z",
"identifiers": [

"08:00:27:10:1f:25"
],

"name": "08:00:27:10:1f:25",
"relations": [

{
"relationType": "containedBy",
"targets": [

"57c5d2fd64bda4e679146530"
]

}
],

"sku": null,
"tags": [],
"type": "compute",
"updatedAt": "2016-08-30T21:07:11.729Z",
"id": "57c0d980851053795fdc7bcf"

},
{

"autoDiscover": false,
"createdAt": "2016-08-26T23:54:37.249Z",
"identifiers": [

"08:00:27:44:97:79"
],

"name": "08:00:27:44:97:79",
"relations": [

{
"relationType": "containedBy",
"targets": [

"57c5d2fd64bda4e679146530"
]

}
],

"sku": null,
"tags": [],
"type": "compute",
"updatedAt": "2016-08-30T21:07:11.724Z",
"id": "57c0d6bd851053795fdc7bc4"

}
]

Remove Relations from a node

1.6. RackHD API, Data Model, Feature 77



RackHD Documentation, Release 2.0

DELETE <server>/api/current/nodes/<id>/relations

curl -H "Content-Type: application/json" -X DELETE -d '{ <relationType>: [<list of
→˓targets>]}' <server>/api/current/nodes/<id>/relations

Sample request body:

{
"contains": ["57c0d980851053795fdc7bcf", "57c0d6bd851053795fdc7bc4"]

}

Sample response body:

[
{

"autoDiscover": false,
"createdAt": "2016-08-30T18:39:57.819Z",
"name": "demoRack",
"relations": [],
"tags": [],
"type": "rack",
"updatedAt": "2016-08-30T21:14:11.553Z",
"id": "57c5d2fd64bda4e679146530"

},
{

"autoDiscover": false,
"createdAt": "2016-08-27T00:06:24.784Z",
"identifiers": [

"08:00:27:10:1f:25"
],

"name": "08:00:27:10:1f:25",
"relations": [],
"sku": null,
"tags": [],
"type": "compute",
"updatedAt": "2016-08-30T21:14:11.566Z",
"id": "57c0d980851053795fdc7bcf"

},
{

"autoDiscover": false,
"createdAt": "2016-08-26T23:54:37.249Z",
"identifiers": [

"08:00:27:44:97:79"
],

"name": "08:00:27:44:97:79",
"relations": [],
"sku": null,
"tags": [],
"type": "compute",
"updatedAt": "2016-08-30T21:14:11.559Z",
"id": "57c0d6bd851053795fdc7bc4"

}
]

78 Chapter 1. Contents



RackHD Documentation, Release 2.0

1.6.5 Catalogs

Table of Contents

• Catalogs

– Defining Catalogs

– API Commands for Catalogs

Catalogs are free form data structures with information about the nodes. Catalogs are created during ‘discovery’
workflows, and present information that can be requested via API and is available to workflows to operate against.

Defining Catalogs

• id (string): unique identifier for the node

• createdAt (string): ISO8601 date string of time resource was created

• updatedAt (string): ISO8601 date string of time resource was last updated

• data (json): A JSON data structure specific to the catalog tool

• node (string): the node to which this catalog is associated

• source (string): type of the data

API Commands for Catalogs

The following are common API commands that can be used when running the on-http process.

List all the (latest) catalog data associated with a node

GET /api/current/nodes/<id>/catalogs

curl <server>/api/current/nodes<id>/catalogs

To retrieve a specific catalog source for a node

GET /api/current/nodes/<id>/catalogs/<source>

curl <server>/api/current/nodes<id>/catalogs/<source>

Sample Output:

{
"createdAt": "2015-11-30T21:37:49.696Z",
"data": {

"BIOS Information": {
"Address": "0xE0000",
"Characteristics": [

"ISA is supported",
"PCI is supported",
"Boot from CD is supported",
"Selectable boot is supported",

(continues on next page)

1.6. RackHD API, Data Model, Feature 79



RackHD Documentation, Release 2.0

(continued from previous page)

"8042 keyboard services are supported (int 9h)",
"CGA/mono video services are supported (int 10h)",
"ACPI is supported"

],
"ROM Size": "128 kB",
"Release Date": "12/01/2006",
"Runtime Size": "128 kB",
"Vendor": "innotek GmbH",
"Version": "VirtualBox"

},
"Base Board Information": {

"Asset Tag": "Not Specified",
"Chassis Handle": "0x0003",
"Contained Object Handles": "0",
"Features": [

"Board is a hosting board"
],
"Location In Chassis": "Not Specified",
"Manufacturer": "Oracle Corporation",
"Product Name": "VirtualBox",
"Serial Number": "0",
"Type": "Motherboard",
"Version": "1.2"

},
"Chassis Information": {

"Asset Tag": "Not Specified",
"Boot-up State": "Safe",
"Lock": "Not Present",
"Manufacturer": "Oracle Corporation",
"Power Supply State": "Safe",
"Security Status": "None",
"Serial Number": "Not Specified",
"Thermal State": "Safe",
"Type": "Other",
"Version": "Not Specified"

},
"Inactive": [

{},
{},
{}

],
"OEM Strings": {

"String 1": "vboxVer_5.0.10",
"String 2": "vboxRev_104061"

},
"OEM-specific Type": {

"Header and Data": [
"80 08 08 00 E7 7D 21 00"

]
},
"System Information": {

"Family": "Virtual Machine",
"Manufacturer": "innotek GmbH",
"Product Name": "VirtualBox",
"SKU Number": "Not Specified",
"Serial Number": "0",
"UUID": "992DA874-C028-4CDD-BB06-C86D525A7056",

(continues on next page)

80 Chapter 1. Contents



RackHD Documentation, Release 2.0

(continued from previous page)

"Version": "1.2",
"Wake-up Type": "Power Switch"

}
},
"id": "565cc1ad807f92fc51a7c9bf",
"node": "565cc18ec3f522fe51620fa2",
"source": "dmi",
"updatedAt": "2015-11-30T21:37:49.696Z"

}

1.6.6 Out of Band Management Settings (OBMs)

Table of Contents

• Out of Band Management Settings (OBMs)

– API Commands for OBMs

API Commands for OBMs

The following are common API commands that can be used when running the on-http process.

Get list of Out of Band Management settings that have been associated with nodes.

Get list of OBMs settings

GET /api/current/obms

curl <server>/api/current/obms

Get list of OBMs schemas showing required properties to create an OBM

GET /api/current/obms/definitions

curl <server>/api/current/obms/definitions

Create or update a single OBM service and associate it with a node

PUT /api/current/obms

curl -X PUT -H "Content-Type: application/json" -d '{ "nodeId": <node id>, "service":
→˓"ipmi-obm-service", "config": { "user": "admin", "password": "admin", "host": "
→˓<host ip>" } }' /api/current/obms

Example output of PUT

{
"id": "5911fa6447f8b7b207f9a485",
"node": "/api/2.0/nodes/590cbcbf29ba9e40471c9f3c",
"service": "ipmi-obm-service",
"config": {

(continues on next page)

1.6. RackHD API, Data Model, Feature 81



RackHD Documentation, Release 2.0

(continued from previous page)

"user": "admin",
"host": "172.31.128.2"

}
}

Get a specific OBM setting

GET /api/current/obms/<id>

curl <server>/api/current/obms/<id>

PATCH an OBM setting

PATCH /api/current/obms/<id>

curl -X PUT -H "Content-Type: application/json" -d '{ "nodeId": <node id>, "service":
→˓"ipmi-obm-service", "config": { "user": "admin", "password": "admin", "host": "
→˓<host ip>" } }' /api/current/obms/<id>

Delete an OBM setting

DELETE /api/current/obms/<id>

curl -X DELETE <server>/api/current/obms/<id>

To set a no-op OBM setting on a node

curl -X PUT -H "Content-Type:application/json" localhost/api/current/nodes/
→˓5542b78c130198aa216da3ac -d '{ { "service": "noop-obm-service", "config": { } } }'

To set a IPMI OBM setting on a node

curl -X PUT -H 'Content-Type: application/json' -d ' { "service": "ipmi-obm-service",
→˓"config": { "host": "<host ip>", "user": "admin", "password": "admin" } }' <server>/
→˓api/current/nodes/<nodeID>/obm

How to use obms when more than one obm are present on a node

Example: when update firmware workflow is called on a node that has multiple obms (ipmi-obm-service, redfish-obm-
service), the payload needs to call out what obm service to use for certain tasks within the workflow that use the obm
service..

POST /api/current/nodes/<id>/nodes/workflows?name=Graph.Dell.Racadm.Update.Firmware

{
"options": {

"defaults": {
"filePath": "xyz",
"serverUsername": "abc",
"serverPassword": "123",
"serverFilePath": "def"

},
"set-boot-pxe": {

"obmServiceName": "ipmi-obm-service"
},

(continues on next page)

82 Chapter 1. Contents



RackHD Documentation, Release 2.0

(continued from previous page)

"reboot": {
"obmServiceName": "ipmi-obm-service"

}
}

1.6.7 In Band Management Settings (IBMs)

Table of Contents

• In Band Management Settings (IBMs)

– API Commands for IBMs

API Commands for IBMs

The following are common API commands that can be used when running the on-http process.

Get list of In Band Management settings that have been associated with nodes.

Get list of IBMs settings

GET /api/current/ibms

curl <server>/api/current/ibms

Get list of IBMs schemas showing required properties to create an IBM

GET /api/current/ibms/definitions

curl <server>/api/current/ibms/definitions

Create or update a single IBM service and associate it with a node

PUT /api/current/ibms

curl -X PUT -H "Content-Type: application/json" -d '{ "nodeId": <node id>, "service":
→˓"snmp-ibm-service", "config": { "community": "public", "host": "<host ip>" } }' /
→˓api/current/ibms

Example output of PUT

{
"id": "591c569c087752c67428e4b3",
"node": "/api/2.0/nodes/590cbcbf29ba9e40471c9f3c",
"service": "snmp-ibm-service",
"config": {
"host": "172.31.128.2"

}
}

Get a specific IBM setting

1.6. RackHD API, Data Model, Feature 83



RackHD Documentation, Release 2.0

GET /api/current/ibms/<id>

curl <server>/api/current/ibms/<id>

PATCH an IBM setting

PATCH /api/current/ibms/<id>

curl -X PUT -H "Content-Type: application/json" -d '{ "nodeId": <node id>, "service":
→˓"snmp-ibm-service", "config": { "community": "public", "host": "<host ip>" } }' /
→˓api/current/ibms/<id>

Delete an IBM setting

DELETE /api/current/ibms/<id>

curl -X DELETE <server>/api/current/ibms/<id>

1.6.8 Pollers

Table of Contents

• Pollers

– IPMI

– SNMP

– Metric Pollers

– API commands

– IPMI Poller Alerts

– Chassis Power State Alert

– Poller JSON Format

– ARP Cache Poller

The pollers API provides functionality for periodic collection of IPMI and SNMP data.

IPMI

IPMI Pollers can be standalone or can be associated with a node. When an IPMI poller is associated with a node, it
will attempt to use that node’s IPMI OBM settings in order to communicate with the BMC. Otherwise, the poller must
be manually configured with that node’s IPMI settings.

If a node is found via discovery and contains a BMC catalog, then five IPMI pollers are automatically created for that
node. The five pollers correspond to the “power”, “selInformation”, “sel”, “sdr” and “uid” (chassis LED) commands.
These pollers do not collect data until the node has been configured with IPMIOBM settings.

Custom alerts for “sel” command IPMI pollers can be manually configured in their data definition, based on string
and/or regex matching. IPMI pollers for the “sdr” command will automatically publish alerts onto an AMQP channel
if any sensors of type “threshold” hold a value that does not equal “Not Available” or “ok”. See the Alerts section
below for more information.

84 Chapter 1. Contents



RackHD Documentation, Release 2.0

SNMP

SNMP pollers can be standalone or associated with a node. When an SNMP poller is associated with a node, it
attempts to use that node’s snmpSettings in order to communicate via SNMP. Otherwise, the poller must be manually
configured with that node’s SNMP settings.

If a node with “type”: “switch” is created via the /nodes API with autoDiscover set to true, then six SNMP-based
metric pollers will be created automatically for that node (see the Metric pollers section below for a list of these).

Example request to create and auto-discover a switch:

POST /api/current/nodes
Content-Type: application/json

{
"name": "my switch",
"identifiers": [],
"ibms": [{"service": "snmp-ibm-service", "config": {"host": "10.1.1.3", "community

→˓": "public"}}],
"type": "switch",
"autoDiscover": true

}

Metric Pollers

In some cases, the data desired from a poller may require more complex processing than simply running an IPMI or
SNMP command and parsing it. To address this, there is a poller type called a metric. A metric uses SNMP or IPMI,
but can make multiples of these calls in aggregate and add post-processing logic to the results. There are currently six
metrics available in the RackHD system:

• snmp-interface-state

• snmp-interface-bandwidth-utilization

• snmp-memory-usage

• snmp-processor-load

• snmp-txrx-counters

• snmp-switch-sensor-status

These metrics use SNMP to query multiple sources of information in order to calculate result data. For example, the
bandwidth utilization metric calculates the delta between two sources of poll data at different times in order to produce
data about how much network bandwidth is flowing through each interface.

API commands

When running the on-http process, these are some common API commands you can send:

Get available pollers in the library

GET /api/current/pollers/library

curl <server>/api/current/pollers/library

1.6. RackHD API, Data Model, Feature 85



RackHD Documentation, Release 2.0

Create a new SNMP poller with a node

To use an SNMP poller that references a node, the node document must have an “ibms” field with a host and community
fields:

// example node document with snmp settings
{

"name": "example node",
"identifiers": [],
"ibms": [{"service": "snmp-ibm-service", "config": {"host": "10.1.1.3", "community

→˓": "public"}}]
}

POST /api/current/pollers
{

"type": "snmp",
"pollInterval": 10000,
"node": "54daadd764f1a8f1088fdc42",
"config": {

"oids": [
"IF-MIB::ifSpeed",
"IF-MIB::ifOperStatus"

]
}

}

curl -X POST \
-H 'Content-Type: application/json' \
-d '{"type":"snmp","pollInterval":10000,"node":"54daadd764f1a8f1088fdc42",

"config":{"oids":["IF-MIB::ifSpeed","IF-MIB::ifOperStatus"}}' \
<server>/api/current/pollers

Create a New IPMI Poller With a Node

POST /api/current/pollers
{

"type": "ipmi",
"pollInterval": 10000,
"node": "54daadd764f1a8f1088fdc42",
"config": {

"command": "power"
}

}

curl -X POST \
-H 'Content-Type: application/json' \
-d '{"type":"ipmi","pollInterval":10000,"node":"54daadd764f1a8f1088fdc42",

"config":{"command":"power"}}' \
<server>/api/current/pollers

{
"node": "54daadd764f1a8f1088fdc42",
"config": {
"command": "power"

},
"pollInterval": 10000,
"lastStarted": null,

(continues on next page)

86 Chapter 1. Contents



RackHD Documentation, Release 2.0

(continued from previous page)

"lastFinished": null,
"failureCount": 0,
"createdAt": "2015-02-11T20:50:41.663Z",
"updatedAt": "2015-02-11T20:50:41.663Z",
"id": "54dbc0a11eaecfc22a30d59b",
"type": "ipmi"

}

Create a New IPMI Poller Without a Node

POST /api/current/pollers
{

"type": "ipmi",
"pollInterval": 10000,
"config": {

"command": "power",
"host": "10.1.1.2",
"user": "admin",
"password": "admin"

}
}

curl -X POST \
-H 'Content-Type: application/json' \
-d '{"type":"ipmi","pollInterval":10000,"node":"54daadd764f1a8f1088fdc42",

"config":{"command":"power","host":"10.1.1.2","user":"admin","password":"admin
→˓"}}' \

<server>/api/current/pollers

{
"node": null,
"config": {
"command": "power",
"host": "10.1.1.2",
"user": "admin",
"password": "admin"

},
"pollInterval": 10000,
"lastStarted": null,
"lastFinished": null,
"failureCount": 0,
"createdAt": "2015-02-11T20:50:41.663Z",
"updatedAt": "2015-02-11T20:50:41.663Z",
"id": "54dbc0a11eaecfc22a30d59b",
"type": "ipmi"

}

Create a New SNMP Poller

POST /api/current/pollers
{

"type": "snmp",
"pollInterval": 10000,
"config": {

"host": "10.1.1.3",
"communityString": "public",

(continues on next page)

1.6. RackHD API, Data Model, Feature 87



RackHD Documentation, Release 2.0

(continued from previous page)

"oids": [
"PDU-MIB::outletVoltage",
"PDU-MIB::outletCurrent"

]
}

}

curl -X POST \
-H 'Content-Type: application/json' \
-d '{"type":"snmp","pollInterval":10000,"node":"54daadd764f1a8f1088fdc42",

"config":{"host":"10.1.1.3","communityString":"public",
"oids":["PDU-MIB::outletVoltage","PDU-MIB::outletCurrent"]}}' \

<server>/api/current/pollers

{
"node": null,
"config": {
"host": "10.1.1.3",
"communityString": "public",
"extensionMibs": [
"PDU-MIB::outletVoltage",
"PDU-MIB::outletCurrent"

]
},
"pollInterval": 10000,
"lastStarted": null,
"lastFinished": null,
"failureCount": 0,
"createdAt": "2015-02-11T20:50:41.663Z",
"updatedAt": "2015-02-11T20:50:41.663Z",
"id": "54dbc0a11eaecfc22a30d59b",
"type": "snmp"

}

Create a New Metric Poller

Metric pollers can be created by adding the name of the metric to the poller config instead of data like “oids” or
“command”

POST /api/current/pollers
{

"type": "snmp",
"pollInterval": 10000,
"node": "54daadd764f1a8f1088fdc42",
"config": {

"metric": "snmp-interface-bandwidth-utilization"
}

}

curl -X POST \
-H 'Content-Type: application/json' \
-d '{"type":"snmp","pollInterval":10000,"node":"54daadd764f1a8f1088fdc42",

"config":{"metric":"snmp-interface-bandwidth-poller"}}' \
<server>/api/current/pollers

Get a Poller’s Data Stream

88 Chapter 1. Contents



RackHD Documentation, Release 2.0

GET /api/current/pollers/:id/data

curl <server>/api/current/pollers/<pollerid>/data

Sample Output: IPMI

[
{
"user": "admin",
"password": "admin",
"host": "10.1.1.2",
"timestamp": "Wed Feb 11 2015 12:29:26 GMT-0800 (PST)",
"sdr": [

{ "Lower critical": "0.000",
"Upper critical": "87.000",
"Sensor Id": "CPU1 Temp",
"Normal Maximum": "89.000",
"Lower non-critical": "0.000",
"Status": "ok",
"Entry Id Name": "Processor",
"Upper non-critical": "84.000",
"Sensor Type": "Temperature",
"Entity Id": "3.1",
"Nominal Reading": "45.000",
"Sensor Reading": "31",
"Sensor Reading Units": "degrees C",
"Normal Minimum": "-4.000" },

{ "Lower critical": "0.000",
"Upper critical": "87.000",
"Sensor Id": "CPU2 Temp",
"Normal Maximum": "89.000",
"Lower non-critical": "0.000",
"Status": "ok",
"Entry Id Name": "Processor",
"Upper non-critical": "84.000",
"Sensor Type": "Temperature",
"Entity Id": "3.2",
"Nominal Reading": "45.000",
"Sensor Reading": "25",
"Sensor Reading Units": "degrees C",
"Normal Minimum": "-4.000" },

{ "Lower critical": "-7.000",
"Upper critical": "85.000",
"Sensor Id": "System Temp",
"Normal Maximum": "74.000",
"Lower non-critical": "-5.000",
"Status": "ok",
"Entry Id Name": "System Board",
"Upper non-critical": "80.000",
"Sensor Type": "Temperature",
"Entity Id": "7.1",
"Nominal Reading": "45.000",
"Sensor Reading": "30",
"Sensor Reading Units": "degrees C",
"Normal Minimum": "-4.000" },

{ "Lower critical": "-7.000",
"Upper critical": "85.000",

(continues on next page)

1.6. RackHD API, Data Model, Feature 89



RackHD Documentation, Release 2.0

(continued from previous page)

"Sensor Id": "Peripheral Temp",
"Normal Maximum": "74.000",
"Lower non-critical": "-5.000",
"Status": "ok",
"Entry Id Name": "System Board",
"Upper non-critical": "80.000",
"Sensor Type": "Temperature",
"Entity Id": "7.2",
"Nominal Reading": "45.000",
"Sensor Reading": "41",
"Sensor Reading Units": "degrees C",
"Normal Minimum": "-4.000" },

{ "Lower critical": "-8.000",
"Upper critical": "95.000",
"Sensor Id": "PCH Temp",
"Normal Maximum": "67.000",
"Lower non-critical": "-5.000",
"Status": "ok",
"Entry Id Name": "System Board",
"Upper non-critical": "90.000",
"Sensor Type": "Temperature",
"Entity Id": "7.3",
"Nominal Reading": "45.000",
"Sensor Reading": "50",
"Sensor Reading Units": "degrees C",
"Normal Minimum": "-4.000" },

{ "Lower critical": "2.000",
"Upper critical": "85.000",
"Sensor Id": "P1-DIMMA1 TEMP",
"Normal Maximum": "206.000",
"Lower non-critical": "4.000",
"Status": "ok",
"Entry Id Name": "Memory Device",
"Upper non-critical": "80.000",
"Sensor Type": "Temperature",
"Entity Id": "32.64",
"Nominal Reading": "225.000",
"Sensor Reading": "37",
"Sensor Reading Units": "degrees C",
"Normal Minimum": "168.000" },

{ "Lower critical": "2.000",
"Upper critical": "85.000",
"Sensor Id": "P1-DIMMB1 TEMP",
"Normal Maximum": "206.000",
"Lower non-critical": "4.000",
"Status": "ok",
"Entry Id Name": "Memory Device",
"Upper non-critical": "80.000",
"Sensor Type": "Temperature",
"Entity Id": "32.65",
"Nominal Reading": "225.000",
"Sensor Reading": "37",
"Sensor Reading Units": "degrees C",
"Normal Minimum": "168.000" },

{ "Lower critical": "2.000",
"Upper critical": "85.000",
"Sensor Id": "P1-DIMMC1 TEMP",

(continues on next page)

90 Chapter 1. Contents



RackHD Documentation, Release 2.0

(continued from previous page)

"Normal Maximum": "206.000",
"Lower non-critical": "4.000",
"Status": "ok",
"Entry Id Name": "Memory Device",
"Upper non-critical": "80.000",
"Sensor Type": "Temperature",
"Entity Id": "32.68",
"Nominal Reading": "225.000",
"Sensor Reading": "38",
"Sensor Reading Units": "degrees C",
"Normal Minimum": "168.000" },

{ "Lower critical": "2.000",
"Upper critical": "85.000",
"Sensor Id": "P1-DIMMD1 TEMP",
"Normal Maximum": "206.000",
"Lower non-critical": "4.000",
"Status": "ok",
"Entry Id Name": "Memory Device",
"Upper non-critical": "80.000",
"Sensor Type": "Temperature",
"Entity Id": "32.69",
"Nominal Reading": "225.000",
"Sensor Reading": "38",
"Sensor Reading Units": "degrees C",
"Normal Minimum": "168.000" },

{ "Lower critical": "2.000",
"Upper critical": "85.000",
"Sensor Id": "P2-DIMME1 TEMP",
"Normal Maximum": "206.000",
"Lower non-critical": "4.000",
"Status": "ok",
"Entry Id Name": "Memory Device",
"Upper non-critical": "80.000",
"Sensor Type": "Temperature",
"Entity Id": "32.72",
"Nominal Reading": "225.000",
"Sensor Reading": "34",
"Sensor Reading Units": "degrees C",
"Normal Minimum": "168.000" },

{ "Lower critical": "2.000",
"Upper critical": "85.000",
"Sensor Id": "P2-DIMMF1 TEMP",
"Normal Maximum": "206.000",
"Lower non-critical": "4.000",
"Status": "ok",
"Entry Id Name": "Memory Device",
"Upper non-critical": "80.000",
"Sensor Type": "Temperature",
"Entity Id": "32.73",
"Nominal Reading": "225.000",
"Sensor Reading": "33",
"Sensor Reading Units": "degrees C",
"Normal Minimum": "168.000" },

{ "Lower critical": "2.000",
"Upper critical": "85.000",
"Sensor Id": "P2-DIMMG1 TEMP",
"Normal Maximum": "206.000",

(continues on next page)

1.6. RackHD API, Data Model, Feature 91



RackHD Documentation, Release 2.0

(continued from previous page)

"Lower non-critical": "4.000",
"Status": "ok",
"Entry Id Name": "Memory Device",
"Upper non-critical": "80.000",
"Sensor Type": "Temperature",
"Entity Id": "32.76",
"Nominal Reading": "225.000",
"Sensor Reading": "34",
"Sensor Reading Units": "degrees C",
"Normal Minimum": "168.000" },

{ "Lower critical": "2.000",
"Upper critical": "85.000",
"Sensor Id": "P2-DIMMH1 TEMP",
"Normal Maximum": "206.000",
"Lower non-critical": "4.000",
"Status": "ok",
"Entry Id Name": "Memory Device",
"Upper non-critical": "80.000",
"Sensor Type": "Temperature",
"Entity Id": "32.77",
"Nominal Reading": "225.000",
"Sensor Reading": "34",
"Sensor Reading Units": "degrees C",
"Normal Minimum": "168.000" },

{ "Lower critical": "450.000",
"Upper critical": "19050.000",
"Sensor Id": "FAN1",
"Normal Maximum": "12750.000",
"Lower non-critical": "600.000",
"Status": "ok",
"Entry Id Name": "Fan Device",
"Upper non-critical": "18975.000",
"Sensor Type": "Fan",
"Entity Id": "29.1",
"Nominal Reading": "9600.000",
"Sensor Reading": "4050",
"Sensor Reading Units": "RPM",
"Normal Minimum": "1500.000" },

{ "Lower critical": "450.000",
"Upper critical": "19050.000",
"Sensor Id": "FAN2",
"Normal Maximum": "12750.000",
"Lower non-critical": "600.000",
"Status": "ok",
"Entry Id Name": "Fan Device",
"Upper non-critical": "18975.000",
"Sensor Type": "Fan",
"Entity Id": "29.2",
"Nominal Reading": "9600.000",
"Sensor Reading": "3975",
"Sensor Reading Units": "RPM",
"Normal Minimum": "1500.000" },

{ "Lower critical": "0.864",
"Upper critical": "1.392",
"Sensor Id": "VTT",
"Normal Maximum": "1.648",
"Lower non-critical": "0.912",

(continues on next page)

92 Chapter 1. Contents



RackHD Documentation, Release 2.0

(continued from previous page)

"Status": "ok",
"Entry Id Name": "System Board",
"Upper non-critical": "1.344",
"Sensor Type": "Voltage",
"Entity Id": "7.10",
"Nominal Reading": "1.488",
"Sensor Reading": "1.008",
"Sensor Reading Units": "Volts",
"Normal Minimum": "1.344" },

{ "Lower critical": "0.512",
"Upper critical": "1.520",
"Sensor Id": "CPU1 Vcore",
"Normal Maximum": "2.688",
"Lower non-critical": "0.544",
"Status": "ok",
"Entry Id Name": "Processor",
"Upper non-critical": "1.488",
"Sensor Type": "Voltage",
"Entity Id": "3.3",
"Nominal Reading": "2.048",
"Sensor Reading": "0.672",
"Sensor Reading Units": "Volts",
"Normal Minimum": "1.600" },

{ "Lower critical": "0.512",
"Upper critical": "1.520",
"Sensor Id": "CPU2 Vcore",
"Normal Maximum": "2.688",
"Lower non-critical": "0.544",
"Status": "ok",
"Entry Id Name": "Processor",
"Upper non-critical": "1.488",
"Sensor Type": "Voltage",
"Entity Id": "3.4",
"Nominal Reading": "2.048",
"Sensor Reading": "0.688",
"Sensor Reading Units": "Volts",
"Normal Minimum": "1.664" },

{ "Lower critical": "1.152",
"Upper critical": "1.696",
"Sensor Id": "VDIMM ABCD",
"Normal Maximum": "3.488",
"Lower non-critical": "1.200",
"Status": "ok",
"Entry Id Name": "Memory Device",
"Upper non-critical": "1.648",
"Sensor Type": "Voltage",
"Entity Id": "32.1",
"Nominal Reading": "3.072",
"Sensor Reading": "1.360",
"Sensor Reading Units": "Volts",
"Normal Minimum": "2.592" },

{ "Lower critical": "1.152",
"Upper critical": "1.696",
"Sensor Id": "VDIMM EFGH",
"Normal Maximum": "3.488",
"Lower non-critical": "1.200",
"Status": "ok",

(continues on next page)

1.6. RackHD API, Data Model, Feature 93



RackHD Documentation, Release 2.0

(continued from previous page)

"Entry Id Name": "Memory Device",
"Upper non-critical": "1.648",
"Sensor Type": "Voltage",
"Entity Id": "32.2",
"Nominal Reading": "3.072",
"Sensor Reading": "1.344",
"Sensor Reading Units": "Volts",
"Normal Minimum": "2.592" },

{ "Lower critical": "0.928",
"Upper critical": "1.264",
"Sensor Id": "+1.1 V",
"Normal Maximum": "2.416",
"Lower non-critical": "0.976",
"Status": "ok",
"Entry Id Name": "System Board",
"Upper non-critical": "1.216",
"Sensor Type": "Voltage",
"Entity Id": "7.11",
"Nominal Reading": "2.192",
"Sensor Reading": "1.104",
"Sensor Reading Units": "Volts",
"Normal Minimum": "1.968" },

{ "Lower critical": "1.296",
"Upper critical": "1.696",
"Sensor Id": "+1.5 V",
"Normal Maximum": "3.312",
"Lower non-critical": "1.344",
"Status": "ok",
"Entry Id Name": "System Board",
"Upper non-critical": "1.648",
"Sensor Type": "Voltage",
"Entity Id": "7.12",
"Nominal Reading": "3.072",
"Sensor Reading": "1.488",
"Sensor Reading Units": "Volts",
"Normal Minimum": "2.704" },

{ "Lower critical": "2.784",
"Upper critical": "3.792",
"Sensor Id": "3.3V",
"Normal Maximum": "10.656",
"Lower non-critical": "2.928",
"Status": "ok",
"Entry Id Name": "System Board",
"Upper non-critical": "3.648",
"Sensor Type": "Voltage",
"Entity Id": "7.13",
"Nominal Reading": "9.216",
"Sensor Reading": "3.264",
"Sensor Reading Units": "Volts",
"Normal Minimum": "8.928" },

{ "Lower critical": "2.784",
"Upper critical": "3.792",
"Sensor Id": "+3.3VSB",
"Normal Maximum": "7.296",
"Lower non-critical": "2.928",
"Status": "ok",
"Entry Id Name": "System Board",

(continues on next page)

94 Chapter 1. Contents



RackHD Documentation, Release 2.0

(continued from previous page)

"Upper non-critical": "3.648",
"Sensor Type": "Voltage",
"Entity Id": "7.14",
"Nominal Reading": "6.624",
"Sensor Reading": "3.312",
"Sensor Reading Units": "Volts",
"Normal Minimum": "5.952" },

{ "Lower critical": "4.288",
"Upper critical": "5.696",
"Sensor Id": "5V",
"Normal Maximum": "10.560",
"Lower non-critical": "4.480",
"Status": "ok",
"Entry Id Name": "System Board",
"Upper non-critical": "5.504",
"Sensor Type": "Voltage",
"Entity Id": "7.15",
"Nominal Reading": "10.112",
"Sensor Reading": "4.928",
"Sensor Reading Units": "Volts",
"Normal Minimum": "9.280" },

{ "Lower critical": "4.288",
"Upper critical": "5.696",
"Sensor Id": "+5VSB",
"Normal Maximum": "11.008",
"Lower non-critical": "4.480",
"Status": "ok",
"Entry Id Name": "System Board",
"Upper non-critical": "5.504",
"Sensor Type": "Voltage",
"Entity Id": "7.16",
"Nominal Reading": "10.112",
"Sensor Reading": "4.992",
"Sensor Reading Units": "Volts",
"Normal Minimum": "9.024" },

{ "Lower critical": "10.494",
"Upper critical": "13.568",
"Sensor Id": "12V",
"Normal Maximum": "25.970",
"Lower non-critical": "10.812",
"Status": "ok",
"Entry Id Name": "System Board",
"Upper non-critical": "13.250",
"Sensor Type": "Voltage",
"Entity Id": "7.17",
"Nominal Reading": "24.168",
"Sensor Reading": "11.872",
"Sensor Reading Units": "Volts",
"Normal Minimum": "21.624" },

{ "Lower critical": "2.544",
"Upper critical": "3.456",
"Sensor Id": "VBAT",
"Normal Maximum": "11.424",
"Lower non-critical": "2.688",
"Status": "ok",
"Entry Id Name": "System Board",
"Upper non-critical": "3.312",

(continues on next page)

1.6. RackHD API, Data Model, Feature 95



RackHD Documentation, Release 2.0

(continued from previous page)

"Sensor Type": "Voltage",
"Entity Id": "7.18",
"Nominal Reading": "9.216",
"Sensor Reading": "3.168",
"Sensor Reading Units": "Volts",
"Normal Minimum": "8.928" },

{ "Sensor Id": "PS1 Status",
"Status": "ok",
"States Asserted": "Presence detected",
"Entity Id": "10.1" },

{ "Sensor Id": "PS2 Status",
"Status": "ok",
"States Asserted": "Presence detected",
"Entity Id": "10.2" }

]
}

]

Sample Output: SNMP

[
{
"host": "10.1.1.3",
"communityString": "public",
"extensionMibs": [
"PDU-MIB::outletVoltage",
"PDU-MIB::outletCurrent"

],
"mibs": [

[
{
"value": 116000,
"name": "PDU-MIB::outletVoltage-1"

},
{
"value": 116000,
"name": "PDU-MIB::outletVoltage-2"

},
{
"value": 116000,
"name": "PDU-MIB::outletVoltage-3"

},
{
"value": 116000,
"name": "PDU-MIB::outletVoltage-4"

},
{
"value": 116000,
"name": "PDU-MIB::outletVoltage-5"

},
{
"value": 117000,
"name": "PDU-MIB::outletVoltage-6"

},
{
"value": 117000,
"name": "PDU-MIB::outletVoltage-7"

(continues on next page)

96 Chapter 1. Contents



RackHD Documentation, Release 2.0

(continued from previous page)

},
{
"value": 117000,
"name": "PDU-MIB::outletVoltage-8"

}
],
[

{
"value": 0,
"name": "PDU-MIB::outletCurrent-1"

},
{
"value": 0,
"name": "PDU-MIB::outletCurrent-2"

},
{
"value": 0,
"name": "PDU-MIB::outletCurrent-3"

},
{
"value": 0,
"name": "PDU-MIB::outletCurrent-4"

},
{
"value": 0,
"name": "PDU-MIB::outletCurrent-5"

},
{
"value": 737,
"name": "PDU-MIB::outletCurrent-6"

},
{
"value": 1538,
"name": "PDU-MIB::outletCurrent-7"

},
{
"value": 0,
"name": "PDU-MIB::outletCurrent-8"

}
]

],
"timestamp": "Wed Feb 11 2015 13:08:19 GMT-0800 (PST)"

},
{
"host": "10.1.1.3",
"communityString": "public",
"extensionMibs": [
"PDU-MIB::outletVoltage",
"PDU-MIB::outletCurrent"

],
"mibs": [

[
{
"value": 117000,
"name": "PDU-MIB::outletVoltage-1"

},
{

(continues on next page)

1.6. RackHD API, Data Model, Feature 97



RackHD Documentation, Release 2.0

(continued from previous page)

"value": 117000,
"name": "PDU-MIB::outletVoltage-2"

},
{
"value": 117000,
"name": "PDU-MIB::outletVoltage-3"

},
{
"value": 117000,
"name": "PDU-MIB::outletVoltage-4"

},
{
"value": 117000,
"name": "PDU-MIB::outletVoltage-5"

},
{
"value": 117000,
"name": "PDU-MIB::outletVoltage-6"

},
{
"value": 117000,
"name": "PDU-MIB::outletVoltage-7"

},
{
"value": 117000,
"name": "PDU-MIB::outletVoltage-8"

}
],
[

{
"value": 0,
"name": "PDU-MIB::outletCurrent-1"

},
{
"value": 0,
"name": "PDU-MIB::outletCurrent-2"

},
{
"value": 0,
"name": "PDU-MIB::outletCurrent-3"

},
{
"value": 0,
"name": "PDU-MIB::outletCurrent-4"

},
{
"value": 0,
"name": "PDU-MIB::outletCurrent-5"

},
{
"value": 737,
"name": "PDU-MIB::outletCurrent-6"

},
{
"value": 1577,
"name": "PDU-MIB::outletCurrent-7"

},
(continues on next page)

98 Chapter 1. Contents



RackHD Documentation, Release 2.0

(continued from previous page)

{
"value": 0,
"name": "PDU-MIB::outletCurrent-8"

}
]

],
"timestamp": "Wed Feb 11 2015 13:08:25 GMT-0800 (PST)"

},
{
"host": "10.1.1.3",
"communityString": "public",
"extensionMibs": [
"PDU-MIB::outletVoltage",
"PDU-MIB::outletCurrent"

],
"mibs": [

[
{
"value": 116000,
"name": "PDU-MIB::outletVoltage-1"

},
{
"value": 116000,
"name": "PDU-MIB::outletVoltage-2"

},
{
"value": 116000,
"name": "PDU-MIB::outletVoltage-3"

},
{
"value": 116000,
"name": "PDU-MIB::outletVoltage-4"

},
{
"value": 116000,
"name": "PDU-MIB::outletVoltage-5"

},
{
"value": 117000,
"name": "PDU-MIB::outletVoltage-6"

},
{
"value": 117000,
"name": "PDU-MIB::outletVoltage-7"

},
{
"value": 117000,
"name": "PDU-MIB::outletVoltage-8"

}
],
[

{
"value": 0,
"name": "PDU-MIB::outletCurrent-1"

},
{
"value": 0,

(continues on next page)

1.6. RackHD API, Data Model, Feature 99



RackHD Documentation, Release 2.0

(continued from previous page)

"name": "PDU-MIB::outletCurrent-2"
},
{
"value": 0,
"name": "PDU-MIB::outletCurrent-3"

},
{
"value": 0,
"name": "PDU-MIB::outletCurrent-4"

},
{
"value": 0,
"name": "PDU-MIB::outletCurrent-5"

},
{
"value": 756,
"name": "PDU-MIB::outletCurrent-6"

},
{
"value": 1538,
"name": "PDU-MIB::outletCurrent-7"

},
{
"value": 0,
"name": "PDU-MIB::outletCurrent-8"

}
]

],
"timestamp": "Wed Feb 11 2015 13:08:30 GMT-0800 (PST)"

}
]

Get List of Active Pollers

GET /api/current/pollers

curl <server>/api/current/pollers

Get Definition for a Single Poller

GET /api/current/pollers/:id

curl <server>/api/current/pollers/<pollerid>

Update a Single Poller to change the interval

PATCH /api/current/pollers/:id
{

"pollInterval": 15000
}

curl -X PATCH \
-H 'Content-Type: application/json' \
-d '{"pollInterval":15000}' \
<server>/api/current/pollers/<pollerid>

100 Chapter 1. Contents



RackHD Documentation, Release 2.0

Update a Single Poller to pause the poller

PATCH /api/current/pollers/:id
{

"paused": true
}

curl -X PATCH \
-H 'Content-Type: application/json' \
-d '{"paused":true}' \
<server>/api/current/pollers/<pollerid>

Delete a Single Poller

DELETE /api/current/pollers/:id

curl -X DELETE <server>/api/current/pollers/<pollerid>

Get List of Active Pollers Associated With a Node

GET /api/current/nodes/:id/pollers

curl <server>/api/current/nodes/<nodeid>/pollers

IPMI Poller Alerts

Please see Northbound Event Notification for more poller alert events information.

Sample data for a “sel” alert:

{
"type":"polleralert",
"action":"sel.updated",
"typeId":"588586022116386a0d1e860f",
"nodeId":"588585bee0f66f700da40335",
"severity":"warning",
"data":{

"user":"admin",
"host":"172.31.128.13",
"alert":{

"matches":[
{

"Event Type Code":"07",
"Event Data":"/010000|040000/"

}
],
"reading":{

"SEL Record ID":"0102",
"Record Type":"02",
"Timestamp":"01/01/1970 03:09:50",
"Generator ID":"0001",
"EvM Revision":"04",
"Sensor Type":"Physical Security",
"Sensor Number":"02",
"Event Type":"Generic Discrete",
"Event Direction":"Assertion Event",

(continues on next page)

1.6. RackHD API, Data Model, Feature 101



RackHD Documentation, Release 2.0

(continued from previous page)

"Event Data":"010000",
"Description":"Transition to Non-critical from OK",
"Event Type Code":"07",
"Sensor Type Code":"05"

}
}

},
"version":"1.0",
"createdAt":"2017-01-23T07:36:53.092Z"

}

Sample data for an “sdr” alert:

{
"type":"polleralert",
"action":"sdr.updated",
"typeId":"588586022116386a0d1e8610",
"nodeId":"588585bee0f66f700da40335",
"severity":"information",
"data":{

"host":"172.31.128.13",
"user":"admin",
"inCondition":true,
"reading":{

"sensorId":"Fan_SSD1 (0xfd)",
"entityId":"29.1",
"entryIdName":"Fan Device",
"sdrType":"Threshold",
"sensorType":"Fan",
"sensorReading":"0",
"sensorReadingUnits":"% RPM",
"nominalReading":"",
"normalMinimum":"",
"normalMaximum":"",
"statesAsserted":[],
"status":"LowerCritical",
"lowerCritical":"500.000",
"lowerNonCritical":"1000.000",
"positiveHysteresis":"Unspecified",
"negativeHysteresis":"Unspecified",
"minimumSensorRange":"Unspecified",
"maximumSensorRange":"Unspecified",
"eventMessageControl":"Per-threshold",
"readableThresholds":"lcr lnc",
"settableThresholds":"lcr lnc",
"thresholdReadMask":"lcr lnc",
"assertionsEnabled":["lnc- lcr-"],
"deassertionsEnabled":["lnc- lcr-"]

}
},
"version":"1.0",
"createdAt":"2017-01-23T07:36:56.179Z"

}

Sample data for an “snmp” alert:

102 Chapter 1. Contents



RackHD Documentation, Release 2.0

{
"type":"polleralert",
"action":"snmp.updated",
"typeId":"588586022116386a0d1e8611",
"nodeId":"588585bee0f66f700da40335",
"severity":"information",
"data":{

"states":{
"last":"ON",
"current":"OFF"

}
},
data: {

host: '10.1.1.3',
oid: '.1.3.6.1.2.1.1.5.0',
value: 'APC Rack Mounted UPS'
matched: '/Mounted/'

}
"version":"1.0",
"createdAt":"2017-01-23T08:20:32.231Z"

}

Sample data for an “snmp” metric alert:

{
"type":"polleralert",
"action":"snmp.updated",
"typeId":"588586022116386a0d1e8611",
"nodeId":"588585bee0f66f700da40335",
"severity":"information",
"data":{

"states":{
"last":"ON",
"current":"OFF"

}
},
data: {

host: '127.0.0.1',
oid: '.1.3.6.1.4.1.9.9.117.1.1.2.1.2.470',
value: 'No Such Instance currently exists at this OID',
matched: { contains: 'No Such Instance' },
severity: 'warning',
description: 'PSU element is not present',
metric: 'snmp-switch-sensor-status'

}
"version":"1.0",
"createdAt":"2017-01-23T08:20:32.231Z"

}

Creating Alerts

Alerting for sdr pollers is automatic and triggered when a threshold sensor has a value that does not equal either “ok”
or “Not available”. In the example sdr alert above, the value being alerted is “nr”, for Non-recoverable.

Alerts for sel poller data are more flexible and can be user-defined via string or regex matching. The data structure for
an sdr result has five keys: ‘date’, ‘time’, ‘sensor’, ‘event’ and ‘value’. Alert data can be specified via a JSON object
that maps these keys to either exactly matched or regex matched values:

1.6. RackHD API, Data Model, Feature 103



RackHD Documentation, Release 2.0

[
{

"sensor": "/Power Unit\s.*$/",
"event": "Fully Redundant"

}
]

In order for a value string to be interpreted as a regex pattern, it must begin and end with the ‘/’ character. Additionally,
any regex escapes (e.g. n or s) must be double escaped before being serialized and sent over the wire (e.g. n becomes
\n). In most programming languages, the equivalent of <RegexObject>.toString() will handle this serialization.

To add an alert to a poller, the above JSON schema must be added to the poller under config.alerts:

{
"type": "ipmi",
"pollInterval": 10000,
"node": "54daadd764f1a8f1088fdc42",
"config": {

"command": "sel",
"alerts": [

{
"sensor": "/Power Unit\s.*$/",
"event": "Fully Redundant"

},
{

"time": "/[0-3][0-3]:.*/",
"sensor": "/Session Audit\\s.*$/",
"value": "Asserted"

}
]

}
}

Snmp poller alerts can be defined just like sel alerts via string or regex matching. However, the keys for an snmp alert
must be a string or regex whose value you wish to check against the given OID numeric or string representation:

{
"type":"snmp",
"pollInterval":10000,
"node": "560ac7f33ab91d99448fb945",
"config": {
"alerts": [

{
".1.3.6.1.2.1.1.5":"/Mounted/",
".1.3.6.1.2.1.1.1":"/ZA11/"

}
],

"oids": [
".1.3.6.1.2.1.1.1",
".1.3.6.1.2.1.1.5"

]
}

}

Complex alerts are done by replacing the string/regex value with a validation object. The following example will
match all OIDs with ‘InErrors’ in the name and generate an alert when the value is greater than 0.

104 Chapter 1. Contents



RackHD Documentation, Release 2.0

{
"type":"snmp",
"pollInterval":10000,
"node": "560ac7f33ab91d99448fb945",
"config": {

"alerts": [
{

"/\\S*InErrors/": {
"greaterThan": 0,
"integer": true,
"severity": "ignore"

}
}

],
"metric": "snmp-txrx-counters"

}
}

Chassis Power State Alert

The IPMI chassis poller will publish an alert message when the power state of the node transitions. The AMQP
message payload will contain both the current and last power state, a reference location to the node resource and a
reference location to the pollers current data cache.

• Example message:

{
"type":"polleralert",
"action":"chassispower.updated",
"typeId":"588586022116386a0d1e8611",
"nodeId":"588585bee0f66f700da40335",
"severity":"information",
"data":{

"states":{
"last":"ON",
"current":"OFF"

}
},
"version":"1.0",
"createdAt":"2017-01-23T08:20:32.231Z"

}

Poller JSON Format

Pollers are defined via JSON with these required fields:

Name Type Flags Description
type String required Poller type. Valid values: ipmi, snmp
pollInterval Number required Time in milliseconds to wait between polls.

The following fields are only valid for IPMI pollers:

1.6. RackHD API, Data Model, Feature 105



RackHD Documentation, Release 2.0

Name Type Flags Description
config Ob-

ject
re-
quired

Hash of configuration parameters.

con-
fig.command

String re-
quired

IPMI command to run. Valid values: power, sel, sdr

config.host String op-
tional

IP/Hostname of the node’s BMC.

config.user String op-
tional

IPMI username.

con-
fig.password

String op-
tional

IPMI password.

config.metric String op-
tional

Run a metric poller instead of a simple IPMI query. Use instead of con-
fig.command.

node String op-
tional

Node ID to associate this poller with dynamically look up IPMI settings.

The following fields are only valid for SNMP pollers:

Name Type Flags Description
config Object re-

quired
Hash of configuration parameters.

config.host String optional IP/Hostname of the node’s BMC.
con-
fig.community

String optional SNMP community string.

config.oids String[] optional Array of OIDs to poll.
config.metric String optional Run a metric poller instead of a simple OID query. Use instead of con-

fig.oids.
node String optional Node ID to associate this poller with dynamically look up SNMP set-

tings.

The following fields can be PATCH’ed to change poller behavior:

Name Type Description
pollInter-
val

Num-
ber

Time in milliseconds to wait between polls.

paused Boolean Determines if the poller can be scheduled. Setting ‘paused’ to true will cause the poller to no
longer be run when pollInterval expires

ARP Cache Poller

With the Address Resolution Protocol (ARP) cache poller service enabled, the RackHD lookup service will update
MAC/IP bindings based on the Linux kernel’s /proc/net/arp table. This ARP poller deprecates the need for running
the DHCP lease file poller since any IP request made to the host will attempt to resolve the hardware addresses IP and
update the kernel’s ARP cache.

1.6.9 Workflows

Workflows

106 Chapter 1. Contents

https://en.wikipedia.org/wiki/Address_Resolution_Protocol
https://www.kernel.org/doc/Documentation/filesystems/proc.txt


RackHD Documentation, Release 2.0

Table of Contents

• Workflows

– Defining Graphs

– Graph definition attributes

– API Commands for Graphs

The workflow graph definition specifies the order in which tasks should run and provides any context and/or option
values to pass to these functions.

Complex graphs may define event-based tasks or specify data/event channels that should exist between concurrently-
run tasks.

Defining Graphs

Graphs are defined via a JSON definition that conform to this schema:

• friendlyName (string): a human readable name for the graph

• injectableName (string): a unique name used by the system and the API to refer to the graph

• tasks (array of objects): a list of task definitions or references to task definitions.

– tasks.label (string): a unique string to be used as a reference within the graph definition

– tasks.[taskName] (string): the injectableName of a task in the database to run. This or taskDefinition is
required.

– tasks.[taskDefinition] (object): an inline definition of a task, instead of one in the database. This or
taskName is required.

– tasks.[ignoreFailure] (boolean): ignoreFailure: true will prevent the graph from failing on task failure

– tasks.[waitOn] (object): key/value pairs referencing other task labels to desired states of those tasks to
trigger running on. Available states are succeeded, failed and finished (run on succeeded or failed). If
waitOn is not specified, the task will run on graph start.

• [options]

– options.[defaults] (object): key, value pairs that will be handed to any tasks that have matching option keys

– options.<label> (object): key, value pairs that should all be handed to a specific task

Graph definition attributes

Graph Tasks

The tasks field in a graph definition represents the collection of tasks that make up the runtime behavior of the graph.
The task definition is referenced by the taskName field (which maps to the injectableName field in the task def-
inition). The label field is used as a reference when specifying dependencies for other tasks in the graph definition.
For example, this graph will run three tasks one after the other:

{
"injectableName": "Graph.Example.Linear",
"friendlyName": "Linear ordered tasks",
"tasks": [

(continues on next page)

1.6. RackHD API, Data Model, Feature 107



RackHD Documentation, Release 2.0

(continued from previous page)

{
"label": "task-1",
"taskName": "Task.example"

},
{

"label": "task-2",
"taskName": "Task.example",
"waitOn": {

"task-1": "succeeded"
}

},
{

"label": "task-3",
"taskName": "Task.example",
"waitOn": {

"task-2": "succeeded"
}

}
]

}

The ordering is specified by the waitOn key in each task object, which specifies conditions that must be met before
each task can be run. In the above graph definition, task-1 has no dependencies, so it will be run immediately,
task-2 has a dependency on task-1 succeeding, and task-3 has a dependency on task-2 succeeding.

Here is an example of a graph that will run tasks in parallel:

{
"injectableName": "Graph.Example.Parallel",
"friendlyName": "Parallel ordered tasks",
"tasks": [

{
"label": "task-1",
"taskName": "Task.example"

},
{

"label": "task-2",
"taskName": "Task.example",
"waitOn": {

"task-1": "succeeded"
}

},
{

"label": "task-3",
"taskName": "Task.example",
"waitOn": {

"task-1": "succeeded"
}

}
]

}

This graph is almost the same as the “Linear ordered tasks” example, except that task-2 and task-3 both have a
dependency on task-1. When task-1 succeeds, task-2 and task-3 will be started in parallel.

Tasks can also be ordered based on multiple dependencies:

108 Chapter 1. Contents



RackHD Documentation, Release 2.0

{
"injectableName": "Graph.Example.MultipleDependencies",
"friendlyName": "Tasks with multiple dependencies",
"tasks": [

{
"label": "task-1",
"taskName": "Task.example"

},
{

"label": "task-2",
"taskName": "Task.example"

},
{

"label": "task-3",
"taskName": "Task.example",
"waitOn": {

"task-1": "succeeded",
"task-2": "succeeded"

}
}

]
}

In the above example, task-1 and task-2 will be started in parallel, and task-3 will only be started once
task-1 and task-2 have both succeeded.

Graph Options

As detailed in the Task Definitions section, each task definition has an options object that can be used to customize the
task. All values set in the options objects are considered defaults, and can be overridden within the Graph definition.
Additionally, the options values can be overridden again by the data in the API request made to run the graph.

For example, a simple task definition with options looks like this:

{
"injectableName": "Task.Example.Options",
"friendlyName": "Task with basic options",
"implementsTask": "Task.Base.Example",
"options": {

"option1": "value 1",
"option2": "value 2"

},
"properties": {}

}

As is, this task definition specifies default values of “value 1” and “value 2” for its respective options. In the graph
definition, these values can be changed to have new defaults by adding a key to the Graph.options object that
matches the label string given to the task object (“example-options-task” in this case):

{
"injectableName": "Graph.Example.Options",
"friendlyName": "Override options for a task",
"options": {

"example-options-task": {
"option1": "overridden value 1",
"option2": "overridden value 2"

}
},

(continues on next page)

1.6. RackHD API, Data Model, Feature 109



RackHD Documentation, Release 2.0

(continued from previous page)

"tasks": [
{

"label": "example-options-task",
"taskName": "Task.Example.Options"

}
]

}

// Task.Example.Options will be run as this
{

"injectableName": "Task.Example.Options",
"friendlyName": "Task with basic options",
"implementsTask": "Task.Base.Example",
"options": {

"option1": "overridden value 1",
"option2": "overridden value 2"

},
"properties": {}

}

Sometimes, it is necessary to be able to propagate the same values to multiple tasks, but it can be a chore to make
a separate options object for each task label. In this case, there is a special field used in the Graph.options
object called defaults. When defaults is set, the graph will iterate through each key in the object and override
that value for every task definition that also has that key in its respective options object. In the above example, the
Task.Example.Options definition will be changed with new values for option1 and option2, but not for
option3, since option3 does not exist in the options object for that task definition:

{
"injectableName": "Graph.Example.Defaults",
"friendlyName": "Override options with defaults",
"options": {

"defaults": {
"option1": "overridden value 1",
"option2": "overridden value 2",
"option3": "this will not get set"

}
},
"tasks": [

{
"label": "example-options-task",
"taskName": "Task.Example.Options"

}
]

}

// Task.Example.Options will be run as this
{

"injectableName": "Task.Example.Options",
"friendlyName": "Task with basic options",
"implementsTask": "Task.Base.Example",
"options": {

"option1": "overridden value 1",
"option2": "overridden value 2"

},
"properties": {}

}

110 Chapter 1. Contents



RackHD Documentation, Release 2.0

The defaults object can be used to share values across every task definition that includes them, as in this example
workflow that validates and sets a username.

{
"injectableName": "Graph.Example.SetUsername",
"friendlyName": "Set a username",
"options": {

"defaults": {
"username": "TESTUSER",
"group": "admin"

}
},
"tasks": [

{
"label": "validate-username",
"taskName": "Task.Example.ValidateUsername"

},
{

"label": "set-username",
"taskName": "Task.Example.SetUsername",
"waitOn": {

"validate-username": "succeeded"
}

}
]

}

// Task.Example.ValidateUsername definition
{

"injectableName": "Task.Example.Validateusername",
"friendlyName": "Validate a username",
"implementsTask": "Task.Base.ValidateUsername",
"options": {

"username": null,
},
"properties": {}

}

// Task.Example.SetUsername definition
{

"injectableName": "Task.Example.Setusername",
"friendlyName": "Set a username",
"implementsTask": "Task.Base.SetUsername",
"options": {

"username": null,
"group": null

},
"properties": {}

}

Both tasks will share the “TESTUSER” value for the username option, but only the Task.Example.
SetUsername task will use the value for group, since it is the only task definition in this graph with that key
in its options object. After processing the graph definition and the default options, the task definitions will be run as:

// Task.Example.ValidateUsername definition after Graph defaults applied
{

"injectableName": "Task.Example.Validateusername",
"friendlyName": "Validate a username",

(continues on next page)

1.6. RackHD API, Data Model, Feature 111



RackHD Documentation, Release 2.0

(continued from previous page)

"implementsTask": "Task.Base.ValidateUsername",
"options": {

"username": "TESTUSER"
},
"properties": {}

}

// Task.Example.SetUsername definition after Graph defaults applied
{

"injectableName": "Task.Example.Setusername",
"friendlyName": "Set a username",
"implementsTask": "Task.Base.SetUsername",
"options": {

"username": "TESTUSER",
"group": "admin"

},
"properties": {}

}

API Commands for Graphs

The following are API commands that can be used when running the on-http process.

Get Available Graphs in the Library

GET /api/current/workflows/graphs

curl <server>/api/current/workflows/graphs

Deprecated 1.1 API - Get Available Graphs in the Library

GET /api/1.1/workflows/library/*

curl <server>/api/1.1/workflows/library/*

Query the State of an Active Graph

GET /api/current/nodes/<id>/workflows?active=true

curl <server>/api/current/workflows?active=true

Deprecated 1.1 API - Query State of an Active Graph

GET /api/1.1/nodes/<id>/workflows/active

curl <server>/api/1.1/nodes/<id>/workflows/active

Cancel or Kill an Active Graph running against a Node

PUT /api/current/nodes/<id>/workflows/action
{

"command": "cancel"
}

112 Chapter 1. Contents



RackHD Documentation, Release 2.0

curl -X PUT \
-H 'Content-Type: application/json' \
-d '{"command": "cancel"}' \
<server>/api/current/nodes/<id>/workflows/action

Deprecated 1.1 API - Cancel or Kill an Active Graph running against a Node

DELETE /api/1.1/nodes/<id>/workflows/active

curl -X DELETE <server>/api/1.1/nodes/<id>/workflows/active

List all Graphs that have or are running against a Node

GET /api/current/nodes/<id>/workflows

curl <server>/api/current/nodes/<id>/workflows

Create a Graph Definition

PUT /api/current/workflows/graphs
{

<json definition of graph>
}

Deprecated 1.1 API - Create a Graph Definition

PUT /api/1.1/workflows
{

<json definition of graph>
}

Run a New Graph Against a Node

Find the graph definition you would like to use and copy the top-level injectableName attribute.

POST /api/current/nodes/<id>/workflows
{

"name": <graph name>
}

curl -X POST -H 'Content-Type: application/json' <server>/api/current/nodes/<id>/
→˓workflows?name=<graphname>
OR
curl -X POST \

-H 'Content-Type: application/json' \
-d '{"name": "<graphname>"}' \
<server>/api/current/nodes/<id>/workflows

To override option values, add an options object to the POST data as detailed in the Graph Options section.

POST /api/current/nodes/<id>/workflows
{

"name": <graph name>
"options": { <graph options here> }

}

1.6. RackHD API, Data Model, Feature 113



RackHD Documentation, Release 2.0

For example, to override an option “username” for all tasks in a graph that utilize that option (see Graph Username
Example, send the following request:

POST /api/current/nodes/<id>/workflows
{

"name": <graph name>
"options": {

"defaults": {
"username": "customusername"

}
}

}

Sample Output:

{
"_events": {},
"_status": "valid",
"cancelled": false,
"completeEventString": "complete",
"context": {

"b9b29b18-309f-439d-8de7-a1042c400d9a": {
"cancelled": false,
"local": {

"stats": {}
},
"parent": {}

},
"graphId": "c2d48e40-7beb-4d64-9d59-a475c6732780",
"target": "54daab331ee7cb79d888cba5"

},
"createdAt": "2015-02-11T18:35:25.277Z",
"definition": {

"friendlyName": "Zerotouch vEOS Graph",
"injectableName": "Graph.Arista.Zerotouch.vEOS",
"options": {},
"tasks": [

{
"label": "zerotouch-veos",
"taskDefinition": {

"friendlyName": "Arista Zerotouch vEOS",
"implementsTask": "Task.Base.Arista.Zerotouch",
"injectableName": "Task.Inline.Arista.Zerotouch.vEOS",
"options": {

"bootConfig": "arista-boot-config",
"bootfile": "zerotouch-vEOS.swi",
"eosImage": "zerotouch-vEOS.swi",
"hostname": "MonorailVEOS",
"profile": "zerotouch-configure.zt",
"startupConfig": "arista-startup-config"

},
"properties": {

"os": {
"switch": {

"type": "eos",
"virtual": true

}
}

(continues on next page)

114 Chapter 1. Contents



RackHD Documentation, Release 2.0

(continued from previous page)

}
}

}
]

},
"failedStates": [

"failed",
"timeout",
"cancelled"

],
"finishedStates": [

"failed",
"succeeded",
"timeout",
"cancelled"

],
"finishedTasks": [],
"id": "54dba0edc44e16c9164110a3",
"injectableName": "Graph.Arista.Zerotouch.vEOS",
"instanceId": "c2d48e40-7beb-4d64-9d59-a475c6732780",
"name": "Zerotouch vEOS Graph",
"pendingTasks": [

{
"cancelled": false,
"context": {

"cancelled": false,
"local": {

"stats": {}
},
"parent": {}

},
"definition": {

"friendlyName": "Arista Zerotouch vEOS",
"implementsTask": "Task.Base.Arista.Zerotouch",
"injectableName": "Task.Inline.Arista.Zerotouch.vEOS",
"options": {

"bootConfig": "arista-boot-config",
"bootfile": "zerotouch-vEOS.swi",
"eosImage": "zerotouch-vEOS.swi",
"hostname": "MonorailVEOS",
"profile": "zerotouch-configure.zt",
"startupConfig": "arista-startup-config"

},
"properties": {

"os": {
"switch": {

"type": "eos",
"virtual": true

}
}

},
"runJob": "Job.Arista.Zerotouch"

},
"dependents": [],
"failedStates": [

"failed",
"timeout",

(continues on next page)

1.6. RackHD API, Data Model, Feature 115



RackHD Documentation, Release 2.0

(continued from previous page)

"cancelled"
],
"friendlyName": "Arista Zerotouch vEOS",
"ignoreFailure": false,
"instanceId": "b9b29b18-309f-439d-8de7-a1042c400d9a",
"name": "Task.Inline.Arista.Zerotouch.vEOS",
"options": {

"bootConfig": "arista-boot-config",
"bootfile": "zerotouch-vEOS.swi",
"eosImage": "zerotouch-vEOS.swi",
"hostname": "MonorailVEOS",
"profile": "zerotouch-configure.zt",
"startupConfig": "arista-startup-config"

},
"parentContext": {

"b9b29b18-309f-439d-8de7-a1042c400d9a": {
"cancelled": false,
"local": {

"stats": {}
},
"parent": {}

},
"graphId": "c2d48e40-7beb-4d64-9d59-a475c6732780",
"target": "54daab331ee7cb79d888cba5"

},
"properties": {

"os": {
"switch": {

"type": "eos",
"virtual": true

}
}

},
"retriesAllowed": 5,
"retriesAttempted": 0,
"state": "pending",
"stats": {

"completed": null,
"created": "2015-02-11T18:35:25.269Z",
"started": null

},
"successStates": [

"succeeded"
],
"tags": [],
"waitingOn": []

}
],
"ready": [],
"serviceGraph": null,
"tasks": {

"b9b29b18-309f-439d-8de7-a1042c400d9a": {
"cancelled": false,
"context": {

"cancelled": false,
"local": {

"stats": {}
(continues on next page)

116 Chapter 1. Contents



RackHD Documentation, Release 2.0

(continued from previous page)

},
"parent": {}

},
"definition": {

"friendlyName": "Arista Zerotouch vEOS",
"implementsTask": "Task.Base.Arista.Zerotouch",
"injectableName": "Task.Inline.Arista.Zerotouch.vEOS",
"options": {

"bootConfig": "arista-boot-config",
"bootfile": "zerotouch-vEOS.swi",
"eosImage": "zerotouch-vEOS.swi",
"hostname": "MonorailVEOS",
"profile": "zerotouch-configure.zt",
"startupConfig": "arista-startup-config"

},
"properties": {

"os": {
"switch": {

"type": "eos",
"virtual": true

}
}

},
"runJob": "Job.Arista.Zerotouch"

},
"dependents": [],
"failedStates": [

"failed",
"timeout",
"cancelled"

],
"friendlyName": "Arista Zerotouch vEOS",
"ignoreFailure": false,
"instanceId": "b9b29b18-309f-439d-8de7-a1042c400d9a",
"name": "Task.Inline.Arista.Zerotouch.vEOS",
"options": {

"bootConfig": "arista-boot-config",
"bootfile": "zerotouch-vEOS.swi",
"eosImage": "zerotouch-vEOS.swi",
"hostname": "MonorailVEOS",
"profile": "zerotouch-configure.zt",
"startupConfig": "arista-startup-config"

},
"parentContext": {

"b9b29b18-309f-439d-8de7-a1042c400d9a": {
"cancelled": false,
"local": {

"stats": {}
},
"parent": {}

},
"graphId": "c2d48e40-7beb-4d64-9d59-a475c6732780",
"target": "54daab331ee7cb79d888cba5"

},
"properties": {

"os": {
"switch": {

(continues on next page)

1.6. RackHD API, Data Model, Feature 117



RackHD Documentation, Release 2.0

(continued from previous page)

"type": "eos",
"virtual": true

}
}

},
"retriesAllowed": 5,
"retriesAttempted": 0,
"state": "pending",
"stats": {

"completed": null,
"created": "2015-02-11T18:35:25.269Z",
"started": null

},
"successStates": [

"succeeded"
],
"tags": [],
"waitingOn": []

}
},
"updatedAt": "2015-02-11T18:35:25.277Z"

}

Workflow Examples

Table of Contents

• Workflow Examples

– Creating a Custom Zerotouch Graph for Arista

– Creating a Linux Commands Graph

Creating a Custom Zerotouch Graph for Arista

This section provides instructions for creating a custom zerotouch graph for Arista machines, including defining a
custom EOS image, custom startup-config, and custom zerotouch script.

Below is an example zerotouch graph for booting a vEOS (virtual arista) machine. It uses an inline task definition (as
opposed to creating a new task definition as a separate step):

{
friendlyName: 'Zerotouch vEOS Graph',
injectableName: 'Graph.Arista.Zerotouch.vEOS',
tasks: [

{
label: 'zerotouch-veos',
taskDefinition: {

friendlyName: 'Arista Zerotouch vEOS',
injectableName: 'Task.Inline.Arista.Zerotouch.vEOS',
implementsTask: 'Task.Base.Arista.Zerotouch',
options: {

(continues on next page)

118 Chapter 1. Contents



RackHD Documentation, Release 2.0

(continued from previous page)

profile: 'zerotouch-configure.zt',
bootConfig: 'arista-boot-config',
startupConfig: 'arista-startup-config',
eosImage: 'common/zerotouch-vEOS.swi',
bootfile: 'zerotouch-vEOS.swi',
hostname: 'MonorailVEOS'

},
properties: {

os: {
switch: {

type: 'vEOS',
virtual: true

}
}

}
}

}
]

}

To customize this graph, change the following fields:

Field Description
friendlyName A unique friendly name for the graph.
injectableName A unique injectable name for the graph.
task/friendlyName A unique friendlyName for the task.
task/injectableNameA unique injectableName for the task.
profile The default profile is sufficient for most cases. See the Zerotouch Profile section for more

information.
bootConfig The default bootConfig is sufficient for most cases. See the Zerotouch Profile section for more

information.
startupConfig Specify the name of the custom startup config. See the Adding Zerotouch Templates section

for more information.
eosImage Specify the name of the EOS image. See the Adding EOS Images section for more information.
bootfile In most cases, specify the eosImage name.
hostname An value rendered into the default arista-startup-config template. Depending on the template,

this may be optional.
properties A object containing any tags/metadata that you wish to add.

Adding Zerotouch Templates

Creation

Templates are defined using ejs syntax. To define template variables, use this syntax:

<%=variableName%>

In order to provide a value for this variable when the template is rendered, add the variable name as a key in the options
object of the custom zerotouch task definition:

taskDefinition: {
<other values>
options: {

hostname: 'CustomHostName'

(continues on next page)

1.6. RackHD API, Data Model, Feature 119

https://github.com/tj/ejs


RackHD Documentation, Release 2.0

(continued from previous page)

}
}

The above code renders the following startup config as shown here:

Unrendered:
!
hostname <%=hostname%>
!

Rendered:
!
hostname CustomHostName
!

Uploading

To upload a template, use the templates API:

PUT /api/current/templates/library/<filename>
Content-Type: text/plain

curl -X PUT \
-H 'Content-Type: text/plain' \
-d "<startup config template>" \
<server>/api/current/templates/library/<filename>

Deprecated 1.1 API - To upload a template, use the templates API:

PUT /api/1.1/templates/library/<filename>
Content-Type: application/octet-stream

curl -X PUT \
-H 'Content-Type: application/octet-stream' \
-d "<startup config template>" \
<server>/api/1.1/templates/library/<filename>

Adding EOS Images

Move any EOS images you would like to use into <on-http directory>/static/http/common/.

In the task options, reference the EOS image name along with the common directory, e.g. eosImage: com-
mon/<eosImageName>.

Zerotouch Profile

A zerotouch profile is a script template that is executed by the switch during zerotouch. A basic profile looks like the
following:

#!/usr/bin/Cli -p2
enable
copy {{ api.templates }}/<%=startupConfig%>?nodeId={{ task.nodeId }} flash:startup-
→˓config
copy {{ api.templates }}/<%=bootConfig%>?nodeId={{ task.nodeId }} flash:boot-config
copy http://<%=server%>:<%=port%>/common/<%=eosImage%> flash:
exit

120 Chapter 1. Contents



RackHD Documentation, Release 2.0

Adding #!/usr/bin/Cli -p2 tells the script to be executed by the Arista’s CLI parser. Using #!/bin/bash for more control
is also an option. If using bash for zerotouch config, any config and imaging files should go into the /mnt/flash/
directory.

Zerotouch Boot Config

The zerotouch boot config is a very simple config that specifies which EOS image file to boot. This should almost
always match the EOS image filename you have provided, e.g.:

SWI=flash:/<%=bootfile%>

Creating a Linux Commands Graph

Linux Commands Task

The Linux Commands task is a generic task that enables running of any shell commands against a node booted into a
microkernel. These commands are specified in JSON objects within the options.commands array of the task definition.
Optional parameters can be specified to enable cataloging of command output.

A very simple example task definition looks like:

{
"friendlyName" : "Shell commands basic",
"implementsTask" : "Task.Base.Linux.Commands",
"injectableName" : "Task.Linux.Commands.BasicExample",
"options" : {

"commands" : [
{

"command" : "echo testing"
},
{

"command": "ls"
}

]
},
"properties" : { }

}

There is an example task included in the monorail system under the name “Task.Linux.Commands” that makes use of
all parameters that the task can take:

{
"friendlyName" : "Shell commands",
"implementsTask" : "Task.Base.Linux.Commands",
"injectableName" : "Task.Linux.Commands",
"options" : {

"commands" : [
{

"command" : "sudo ls /var",
"catalog" : {

"format" : "raw",
"source" : "ls var"

}
},
{

"command" : "sudo lshw -json",
"catalog" : {

(continues on next page)

1.6. RackHD API, Data Model, Feature 121



RackHD Documentation, Release 2.0

(continued from previous page)

"format" : "json",
"source" : "lshw user"

}
},
{

"command" : "test",
"acceptedResponseCodes" : [

1
]

}
]

},
"properties" : {

"commands" : {}
}

}

The task above runs three commands and catalogs the output of the first two.

sudo ls /var
sudo lshw -json
test

Specifying Scripts or Binaries to Download and Run

Some use cases are too complex to be performed by embedding commands in JSON. Using a pre-defined file may be
more convenient. You can define a file to download and run by specifying a “downloadUrl” field in addition to the
“command” field.

"options": {
"commands" : [

{
"command": "bash myscript.sh",
"downloadUrl": "{{ api.templates }}/myscript.sh?nodeId={{ task.nodeId }}"

}
]

}

This will cause the command runner script on the node to download the script from the specified route (server:port will
be prepended) to the working directory, and execute it according to the specified command (e.g. bash myscript.sh). You
must specify how to run the script correctly in the command field (e.g. node myscript.js arg1 arg2, ./myExecutable).

A note on convention: binary files should be uploaded via the /api/current/files route, and script templates should be
uploaded/downloaded via the /api/current/templates route.

Defining Script Templates

Scripts can mean simple shell scripts, python scripts, etc.

In many cases, you may need access to variables in the script that can be rendered at runtime. Templates are de-
fined using ejs syntax (variables in <%=variable%> tags). Variables are rendered based on the option values of task
definition, for example, if a task is defined with these options. . .

"options": {
"foo": "bar",
"baz": "qux",
"commands" : [

{
(continues on next page)

122 Chapter 1. Contents

https://github.com/tj/ejs


RackHD Documentation, Release 2.0

(continued from previous page)

"command": "bash myscript.sh",
"downloadUrl": "{{ api.templates }}/myscript.sh?nodeId={{ task.nodeId }}"

}
]

}

. . . then the following script template. . .

echo <%=foo%>
echo <%=baz%>

. . . is rendered as below when it is run by a node:

echo bar
echo qux

Predefined template variables

The following variables are predefined and available for use by all templates:

1.6. RackHD API, Data Model, Feature 123



RackHD Documentation, Release 2.0

Field Description
server This refers to the base IP of the RackHD server
port This refers to the base port of the RackHD server
ipaddress This refers to the ipaddress of the requestor
macaddress This refers to the macaddress, as derived from an IP to

MAC lookup, of the requestor
netmask This refers to the netmask configured for the RackHD

DHCP server
gateway This refers to the gateway configured for the RackHD

DHCP server
api

Values used for constructing API requests in a template:

• server – the base URI for the RackHD http
server (e.g. http://<server>:<port> )

• base – the base http URI for the RackHD api
(e.g. http://<server>:<port>/api/current )

• templates – the base http URI for
the RackHD api files route (e.g.
http://<server>:<port>/api/current/templates)

• profiles – the base http URI for
the RackHD api files route (e.g.
http://<server>:<port>/api/current/profiles)

• lookups – the base http URI for
the RackHD api files route (e.g.
http://<server>:<port>/api/current/lookups)

• files – the base http URI for
the RackHD api files route (e.g.
http://<server>:<port>/api/current/files)

• nodes – the base http URI for
the RackHD api nodes route (e.g.
http://<server>:<port>/api/current/nodes)

context This refers to the shared context object that all tasks in a
graph have R/W access to. Templates receive a readonly
snapshot of this context when they are rendered.

task
Values used by the currently running task:

• nodeId – The node identifier that the graph
is bound to via the graph context.

sku This refers to the SKU configuration data fetched from
a SKU definition. This field is added automatically if
a SKU configuration exists in the the SKU pack, rather
than being specified by a user. For more information,
please see SKUs

env This refers to the environment configuration data
retrieved from the environment database collec-
tion.Similar to sku, this field is added automatically,
rather than specified by a user.

Uploading Script Templates

Script templates can be uploaded using the Monorail templates API

124 Chapter 1. Contents



RackHD Documentation, Release 2.0

PUT /api/current/templates/library/<filename>
Content-type: text/plain
---
curl -X PUT -H "Content-Type: text/plain" --data-binary @<script> <server>/api/
→˓current/templates/library/<scriptname>

Deprecated 1.1 API - Uploading Script Templates

PUT /api/1.1/templates/library/<filename>
Content-type: application/octet-stream
---
curl -X PUT -H "Content-Type: application/octet-stream" --data-binary @<script>
→˓<server>/api/1.1/templates/library/<scriptname>

Uploading Binary Files

Binary executables can be uploaded using the Monorail files API:

PUT /api/current/files/<filename>
---
curl -T <binary> <server>/api/current/templates/library/<filename>

Available Options for Command JSON Objects

The task definition above makes use of the different options available for parsing and handling of command output.
Available options are detailed below:

Name Type Required? Description
command string command or script

field required
command to run

downloadUrl string API route suffix for
file download

script/file to download and run

catalog object no an object specifying cataloging parameters if the com-
mand output should be cataloged

accepte-
dRespon-
seCodes

arrayOf-
String

no non-zero exit codes from the command that should not be
treated as failures

The catalog object in the above table may look like:

Name Type Re-
quired?

Description

for-
mat

string yes The parser to should use for output. Available formats are raw, json, and xml.

source string no What the ‘source’ key value in the database document should be. Defaults to ‘un-
known’ if not specified.

Creating a Graph with a Custom Shell Commands Task

To use this feature, new workflows and tasks (units of work) must be registered in the system. To create a basic
workflow that runs user-specified shell commands with specified images, do the following steps:

1. Define a custom workflow task with the images specified to be used (this is not necessary if you don’t need to
use a custom image):

1.6. RackHD API, Data Model, Feature 125



RackHD Documentation, Release 2.0

PUT <server>/api/current/workflows/tasks
Content-Type: application/json
{

"friendlyName": "Bootstrap Linux Custom",
"injectableName": "Task.Linux.Bootstrap.Custom",
"implementsTask": "Task.Base.Linux.Bootstrap",
"options": {

"kernelFile": "vmlinuz-1.2.0-rancher",
"initrdFile": "initrd-1.2.0-rancher",
"dockerFile": "discovery.docker.tar.xz",
"kernelUri": "{{ api.server }}/common/{{ options.kernelFile }}",
"initrdUri": "{{ api.server }}/common/{{ options.initrdFile }}",
"dockerUri": "{{ api.server }}/common/{{ options.dockerFile }}",
"profile": "rancherOS.ipxe",
"comport": "ttyS0"

},
"properties": {}

}

2. Define a task that contains the commands to be run, adding or removing command objects below in the op-
tions.commands array:

PUT <server>/api/current/workflows/tasks
Content-Type: application/json
{

"friendlyName": "Shell commands user",
"injectableName": "Task.Linux.Commands.User",
"implementsTask": "Task.Base.Linux.Commands",
"options": {

"commands": [ <add command objects here> ]
},
"properties": {"type": "userCreated" }

}

The output from the first command (lshw) will be parsed as JSON and cataloged in the database under the “lshw
user” source value. The output from the second command will only be logged, since format and source haven’t been
specified. The third command will normally fail, since ‘test‘ has an exit code of 1, but in this case we have specified
that this is acceptable and not to fail. This feature is useful with certain binaries that have acceptable non-zero exit
codes.

Putting it All Together

Now define a custom workflow that combines these tasks and runs them in a sequence. This one is set up to make
OBM calls as well.

PUT <server>/api/current/workflows/
Content-Type: application/json
{

"friendlyName": "Shell Commands User",
"injectableName": "Graph.ShellCommands.User",
"tasks": [

{
"label": "set-boot-pxe",
"taskName": "Task.Obm.Node.PxeBoot",
"ignoreFailure": true

},
{

(continues on next page)

126 Chapter 1. Contents



RackHD Documentation, Release 2.0

(continued from previous page)

"label": "reboot-start",
"taskName": "Task.Obm.Node.Reboot",
"waitOn": {

"set-boot-pxe": "finished"
}

},
{

"label": "bootstrap-custom",
"taskName": "Task.Linux.Bootstrap.Custom",
"waitOn": {

"reboot-start": "succeeded"
}

},
{

"label": "shell-commands",
"taskName": "Task.Linux.Commands.User",
"waitOn": {

"bootstrap-custom": "succeeded"
}

},
{

"label": "reboot-end",
"taskName": "Task.Obm.Node.Reboot",
"waitOn": {

"shell-commands": "finished"
}

}
]

}

With all of these data, the injectableName and friendlyName can be any string value, as long the references to in-
jectableName are consistent across the three JSON documents.

After defining these custom workflows, you can then run one against a node by referencing the injectableName used
in the JSON posted to /api/current/workflows/:

curl -X POST localhost/api/current/nodes/<identifier>/workflows?name=Graph.
→˓ShellCommands.User

Output from these commands will be logged by the taskgraph runner in /var/log/upstart/on-taskgraph.log.

Workflow Progress Notification

Table of Contents

• Workflow Progress Notification

– Workflow Progress Events

– Progress Message Payload

– Workflow Progress Measurement

* Workflow level progress measurement

* Task level progress measurement

1.6. RackHD API, Data Model, Feature 127



RackHD Documentation, Release 2.0

– Progress Message Retrieve Channels

RackHD workflow progress feature provides message notification mechanism to indicate status of an active workflow
or task. User can get to know what has been done and what is to be done for an active workflow or task with progress
messages.

Workflow Progress Events

RackHD will publish a workflow progress message if any of below events happens:

• Workflow started or finished events

• Task started or finished events

• RackHD marked important milestone events for an active long-run task.

In some cases RackHD can’t easily get progress information, some milestones are created to divide a task into
several small sections. Progress messages will be sent if any of those milestones is achieved.

• Progress timer timeout for an active long-run task.

Some tasks don’t have milestones but progress information is continuous and can be got all the time. In this
case progress messages is generated with fixed interval.

Progress Message Payload

4 attributes are used to describe progress information:

prop-
er-
ties

Type Description

max-
i-
mum

In-
te-
ger

Maximum step quantity for a workflow or a task. For tasks with continuous progress, it is 100.

value In-
te-
ger

Completed step quantity for a workflow or a task. For tasks with continuous progress, it varies from
0-100, which is inversely calculated from percentage and rounded to integer if calculation gives non-
integer value.

per-
cent-
age

String Percentage of a workflow or task that is completed. Normally value divided by maximum will give
percentage. However in the case that tasks have continuous progress, percentage is directly got. In
this case maximum will be always set to 100 and value will be set to the percent number. For example,
a percentage “65%” will give maximum 100 and value 65.

de-
scrip-
tion

String Short description for progress events

Below is an example of progress information payload for a workflow that has 4 steps and we have just finished the
first step. Percentage is 25% given by 1 / 4.

progress: {
value: 1,
maximum: 4,
description: 'Task "Install CentOS" started',
percentage: '25%'

}

128 Chapter 1. Contents



RackHD Documentation, Release 2.0

A complete RackHD progress message payload contains two levels of progress information (refer to Workflow
Progress Measurement) as well as some useful information like graphId, graphName, nodeId, taskId and taskName,
below is an example of a complete progress message:

{
progress: {

value: 1,
maximum: 4,
description: 'Task "Install CentOS" started',
percentage: '25%'

},
graphName: 'Install CentOS',
graphId: '12a8f275-7abf-46ee-834b-6aa34cce8d78',
nodeId: '58542c752be86d0672cef383',
taskProgress: {

taskId: 'cb7d5793-abcf-4a7f-aef6-e768e999de1d',
taskName: 'Install CentOS',
progress: {

value: 0,
maximum: 4,
description: 'Task started',
percentage: '0%'

}
}

}

Though RackHD provides percentage number as progress measurement in progress message, most of the time work-
flow progress is based on events counting. RackHD progress message is not always proper to be used for workflow
executing time estimation.

Workflow Progress Measurement

RackHD progress information contains two levels of progress as shows in Progress Message Payload Example :

• Task level progress: progress measurement of the executing task of an active workflow.

• Workflow level progress: progress measurement of an active workflow.

Task progress is actually part of workflow progress. However task and workflow have two independent progress
measurement methods.

Workflow level progress measurement

Before a workflow’s completion workflow level progress is based on tasks counting. It is measured by completed
tasks count (which will be assigned to value) against total tasks count (which will be assigned to maximum) for the
workflow.

Percentage will be set to 100% and value be set to maximum at workflow’s completion. After completion workflow
level progress will not be updated even though some tasks may still be running.

Task level progress measurement

RackHD has different task level progress measurement methods for non-long-run tasks and two long-run tasks, OS
installation tasks and secure erase task.

1.6. RackHD API, Data Model, Feature 129



RackHD Documentation, Release 2.0

Non-long-run task progress

Each RackHD task has two progress events:

• task started

• task finished

A non-long-run task will complete in short time and only the started and finished events can be sensed. Thus only two
progress messages will be published for non-long-run tasks.

Besides task started and finished events, a time-consuming task is not proper to only publish two events, thus different
measurements are created.

OS installation task progress

As a typical long-run task, OS installation task progress can’t be easily measured. As a compromise, RackHD creates
some milestones at important timeslot of installation process thus divides OS install task into several sub-tasks.

Below table includes descriptions for all existing RackHD OS installation milestones:

Milestone name Milestone description
requestProfile Enter ipxe and request OS installation profile. Common milestone for all OSes.
enterProfile Enter profile, start to download kernel or installer. Common milestone for all OSes.
startInstaller Start installer and prepare installation. Common milestone for all OSes.
preConfig Enter Pre OS configuration.
startSetup Net use Windows Server 2012 and start setup.exe. Only used for Windows Server.
installToDisk Execute OS installation. Only used for CoreOS.
startPartition Start partition. Only used for Ubuntu.
postPartitioning Finished partitioning and mounting, start package installation. Only used for SUSE.
chroot Finished package installation, start first boot. Only used for SUSE.
postConfig Enter Post OS configuration.
completed Finished OS installation. Common milestone for all OSes.

Below table includes default milestone sequence for RackHD supported OSes:

OS Name Milestone
Quantity

Milestones in Sequence

CentOS,
RHEL

6 1.requestProfile; 2.enterProfile; 3.startInstaller; 4.preConfig; 5.postConfig;
6.completed

Esxi 6 1.requestProfile; 2.enterProfile; 3.startInstaller; 4.preConfig; 5.postConfig;
6.completed

CoreOS 5 1.requestProfile; 2.enterProfile; 3.startInstaller; 4.installToDisk; 5.completed
Ubuntu 7 1.requestProfile; 2.enterProfile; 3.startInstaller; 4.preConfig; 5.startPartition;

6.postConfig; 7.completed
Win-
dowServer

5 1.requestProfile; 2.enterProfile; 3.startInstaller; 4.startSetup; 5.completed

SUSE 7 1.requestProfile; 2.enterProfile; 3.startInstaller; 4.preConfig; 5.postPartitioning;
6.chroot; 7.completed

PhotonOS 5 1.requestProfile; 2.enterProfile; 3.startInstaller; 4.postConfig; 5.completed

In progress message, milestone quantity will be set to maximum and sequence number to value while RackHD is
installing OS.

Secure erase task progress

130 Chapter 1. Contents



RackHD Documentation, Release 2.0

For secure erase task, RackHD can get continuous percentage progress from node. Thus node is required to send
the percentage data to RackHD with fixed interval. RackHD will receive and parse the percentage to get value and
maximum and then publish progress message.

Progress Message Retrieve Channels

As instant data, progress messages can’t be retrieved via API. Instead progress messages will be published in AMQP
channel and posted to webhook urls after adding RackHD standard message header.

Below is basic information for user to retrieve data from AMQP channel:

• Exchange: on.events

• Routing Key: graph.progress.updated.information.<graphId>.<nodeId>

More details on RackHD AMQP events and webhook feature, please refer to Northbound Event Notification.

1.6.10 Workflow Tasks

Table of Contents

• Workflow Tasks

– Task Definitions

– Base Task Definitions

– Options Schema

– Task Templates

– Task Rendering Features

– Task Timeouts

– API Commands for Tasks

– Task Annotation

A workflow task is a unit of work decorated with data and logic that allows it to be included and run within a workflow.
Tasks can be defined to do wide-ranging operations, such as bootstrap a server node into a Linux microkernel, parse
data for matches against a rule, and others. The tasks in a workflow are run in a specific order.

A workflow task is made up of three parts:

• Task Definition

• Base Task Definition

• Job

Task Definitions

A task definition contains the basic description of the task. It contains the following fields.

1.6. RackHD API, Data Model, Feature 131



RackHD Documentation, Release 2.0

Name Type Flags Description
friend-
lyName

String Re-
quired

A human-readable name for the task

in-
jectable-
Name

String Re-
quired

A unique name used by the system and the API to refer to the task.

imple-
mentsTask

String Re-
quired

The injectableName of the base task.

op-
tionsS-
chema

Ob-
ject/
String

Op-
tional

The JSON schema for the task’s options, see Options Schema for detail.

options Object Re-
quired

Key value pairs that are passed in as options to the job. Values required by a job may
be defined in the task definition or overridden by options in a graph definition.

proper-
ties

Object Re-
quired

JSON defining any relevant metadata or tagging for the task.

Below is a sample task definition in JSON for an Ubuntu installer.

{
"friendlyName": "Install Ubuntu",
"injectableName": "Task.Os.Install.Ubuntu",
"implementsTask": "Task.Base.Os.Install",
"options": {

"username": "monorail",
"password": "password",
"profile": "install-trusty.ipxe",
"hostname": "monorail",
"uid": 1010,
"domain": ""

},
"properties": {

"os": {
"linux": {

"distribution": "ubuntu",
"release": "trusty"

}
}

}
}

Sample output (returns injectableName):

"Task.Os.Install.Ubuntu.Utopic"

Base Task Definitions

A Base Task Definition outlines validation requirements (an interface) and a common job to be used for a certain class
of tasks. Base Task Definitions exist to provide strict and standardized validation schemas for graphs, and to improve
code re-use and modularity.

The following table describes the fields of a Base Task Definition.

132 Chapter 1. Contents



RackHD Documentation, Release 2.0

Name Type Flags Description
friendly-
Name

String Re-
quired

A human-readable name for the task.

in-
jectable-
Name

String Re-
quired

A unique name used by the system and the API to refer to the task.

option-
sSchema

Ob-
ject/
String

Op-
tional

The JSON schema for the job’s options, see Options Schema for detail.

require-
dOptions

Object Re-
quired

Required option values to be set in a task definition implementing the base task.

required-
Proper-
ties

Object Re-
quired

JSON defining required properties that need to exist in other tasks in a graph in order
for this task to be able to be run successfully.

proper-
ties

Object Re-
quired

JSON defining any relevant metadata or tagging for the task. This metadata is
merged with any properties defined in task definitions that implement the base task.

The following example shows the base task Install Ubuntu task definition:

{
"friendlyName": "Install OS",
"injectableName": "Task.Base.Os.Install",
"runJob": "Job.Os.Install",
"requiredOptions": [

"profile"
],
"requiredProperties": {

"power.state": "reboot"
},
"properties": {

"os": {
"type": "install"

}
}

}

This base task is a generic Install OS task. It runs the job named Job.Os.Install and specifies that this job requires the
option ‘profile’. As a result, any task definition using the Install OS base task must provide at least these options to
the OS installer job. These options are utilized by logic in the job.

this._subscribeRequestProfile(function() {
return this.profile;

});

Another task definition that utilizes the above base task looks like:

{
"friendlyName": "Install CoreOS",
"injectableName": "Task.Os.Install.CoreOS",
"implementsTask": "Task.Base.Os.Install",
"options": {

"username": "root",
"password": "root",
"profile": "install-coreos.ipxe",
"hostname": "coreos-node"

(continues on next page)

1.6. RackHD API, Data Model, Feature 133



RackHD Documentation, Release 2.0

(continued from previous page)

},
"properties": {

"os": {
"linux": {

"distribution": "coreos"
}

}
}

}

The primary difference between the Install CoreOS task and the Install Ubuntu task is the profile value, which is the
ipxe template that specifies the installer images that an installation target should download.

Options Schema

The Options Schema is a JSON-Schema file or object that outlines the attributes and validation requirement for all
options of a task or job. It provides standardized and declarative way to annotate task/job options. It offloads job’s
validation work and brings benefit to the upfront validation for graph input options.

Schema Classification

There are totally 3 kinds of options schema: Common options schema, Base Task options schema and Task options
schema.

• The Common options schema is to describe all those common options that are shared by all tasks, such as
_taskTimeout, the common options schema is defined in the file ‘https://github.com/RackHD/on-tasks/blob/
master/lib/task-data/schemas/common-task-options.json’. User doesn’t have to explicitly define the common
schema in Task or Base Task definition, it is default enabled for every task.

• The schema in Base Task definition is to describe the options of the corresponding job.

• The schema in Task definition is to describe the options of corresponding task. Since a Task defintion will always
link to a Base Task, so the task’s schema will automatically inherit the Base Task’s schema during validation.
So in practice, usually the task schema only needs to describe those options that are not covered in Base Task.

NOTE: The options schema is always optional for Task definition and Base Task definition. If options schema is not
defined, that means user gives up the upfront options validation before running a TaskGraph.

Schema Format

The options schema supports two kinds of format:

• Built-in Schema <Object>: Directly put the full JSON schema content into the Task and Base Task definition.

• Schema File Reference <String>: Specify the file name of a JSON file, the JSON file is a valid JSON schema
and it must be placed in the folder ‘https://github.com/RackHD/on-tasks/tree/master/lib/task-data/schemas’.

The Built-in Schema is usually used when there is few options or for situation that is not suitable to use file reference,
such as within skupack. The File Reference schema is usually used when there are plents of options or to share schema
between Task and Base Task.

Below is an example of Built-in Schema in Base Task definition:

{
"friendlyName": "Analyze OS Repository",
"injectableName": "Task.Base.Os.Analyze.Repo",
"runJob": "Job.Os.Analyze.Repo",
"optionsSchema": {

"properties": {
(continues on next page)

134 Chapter 1. Contents

http://json-schema.org/
https://github.com/RackHD/on-tasks/blob/master/lib/task-data/schemas/common-task-options.json
https://github.com/RackHD/on-tasks/blob/master/lib/task-data/schemas/common-task-options.json
https://github.com/RackHD/on-tasks/tree/master/lib/task-data/schemas


RackHD Documentation, Release 2.0

(continued from previous page)

"version": {
"$ref": "types-installos.json#/definitions/Version"

},
"repo": {

"$ref": "types-installos.json#/definitions/Repo"
},
"osName": {

"enum": [
"ESXi"

]
}

},
"required": [

"osName",
"repo",
"version"

]
},
"requiredProperties": {},
"properties": {}

}

Below is an example of File Reference schema in Base Task definition:

{
"friendlyName": "Linux Commands",
"injectableName": "Task.Base.Linux.Commands",
"runJob": "Job.Linux.Commands",
"optionsSchema": "linux-command.json",
"requiredProperties": {},
"properties": {

"commands": {}
}

}

Upfront Schema Validation

The options schema validation will be firstly executed when user triggers a workflow. Only if all options (Combine
user input and the default value) conform to all of above schemas for the task, the workflow can then be successfully
triggered. If any option violates the schema, The API request will report 400 Bad Request and append detail error
message in response body. For example:

Below is the message if user forgets the required option version while installing CentOS:

"message": "Task.Os.Install.CentOS: JSON schema validation failed - data should have
→˓required property 'version'"

Below is the message if the input uid beyond the allowed range.

"message": "Task.Os.Install.CentOS: JSON schema validation failed - data.users[0].uid
→˓should be >= 500"

Below is the message if the format of option rootPassword is not correct:

"message": "Task.Os.Install.CentOS: JSON schema validation failed - data.rootPassword
→˓should be string"

1.6. RackHD API, Data Model, Feature 135

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1


RackHD Documentation, Release 2.0

Task Templates

There are some values that may be needed in a task definition which are not known in advance. In some cases, it is
also more convenient to use placeholder values in a task definition than literal values. In these cases, a simple template
rendering syntax can be used in task definitions. Rendering is also useful in places where two or more tasks need to
use the same value (e.g. options.file), but it cannot be hardcoded ahead of time.

Task templates use Mustache syntax, with some additional features detailed below. To define a value to be rendered,
place it within curly braces in a string:

someOption: 'an option to be rendered: {{ options.renderedOption }}'

At render time, values are rendered if the exist in the task render context. The render context contains the following
fields:

136 Chapter 1. Contents

http://mustache.github.io/mustache.5.html


RackHD Documentation, Release 2.0

Field Description
server The server field contains all values found in

the configuration for the on-taskgraph process
(/opt/monorail/config.json) Example Usage: {{
server.mongo.port }}

api
Values used for constructing API requests in a template:

• server – the base URI for the RackHD http
server (e.g. http://<server>:<port> )

• base – the base http URI for the RackHD api
(e.g. http://<server>:<port>/api/current )

• templates – the base http URI for
the RackHD api files route (e.g.
http://<server>:<port>/api/current/templates)

• profiles – the base http URI for
the RackHD api files route (e.g.
http://<server>:<port>/api/current/profiles)

• lookups – the base http URI for
the RackHD api files route (e.g.
http://<server>:<port>/api/current/lookups)

• files – the base http URI for
the RackHD api files route (e.g.
http://<server>:<port>/api/current/files)

• nodes – the base http URI for
the RackHD api nodes route (e.g.
http://<server>:<port>/api/current/nodes)

file
Values used for constructing static file server information in a template:

• server – the address of static file server (e.g.
http://<static-file-server>:<port> )

tasks Allows access to instance variables of the task class in-
stance created from the task definition. This is mainly
used to access task.nodeId

options This refers to the task definition options itself. Mainly
for referencing values in substrings that will eventually
be defined by a user (e.g. ‘sudo mv {{ options.targetFile
}} /tmp/{{ options.targetfile }}’ )

context This refers to the shared context object that all tasks in
a graph have R/W access to. Enables one task to use
values produced by another at runtime.
For example, the [ami catalog provider
task](https://<server>:<port>/projects/RackHD/repos/on-
tasks/browse/lib/task-data/tasks/provide-catalog-ami-
bios-version.js) gets the most recent catalog entry for
the AMI bios, whose value can be referenced by other
tasks via {{ context.ami.systemRomId }}

sku This refers to the SKU configuration data fetched from
a SKUs. This field is added automatically if a SKU con-
figuration exists in the the SKUs, rather than being spec-
ified by a user.

env This refers to the environment configuration data
retrieved from the environment database collec-
tion.Similar to sku, this field is added automatically,
rather than specified by a user.

1.6. RackHD API, Data Model, Feature 137

https://rackhd.readthedocs.io/en/latest/rackhd/static_file_server.html


RackHD Documentation, Release 2.0

The download-files task is a good example of a task definition that makes use of multiple objects in the context:

{
friendlyName: 'Flash MegaRAID Controller',
injectableName: 'Task.Linux.Flash.LSI.MegaRAID',
implementsTask: 'Task.Base.Linux.Commands',
options: {

file: null,
downloadDir: '/opt/downloads',
adapter: '0',
commands: [

'sudo /opt/MegaRAID/storcli/storcli64 /c{{ options.adapter }} download ' +
'file={{ options.downloadDir }}/{{ options.file }} noverchk',

'sudo /opt/MegaRAID/MegaCli/MegaCli64 -AdpSetProp -BatWarnDsbl 1 ' +
'-a{{ options.adapter }}',

]
},
properties: {

flash: {
type: 'storage',
vendor: {

lsi: {
controller: 'megaraid'

}
}

}
}

}

On creation, the options are rendered as below. The ‘file’ field is specified in this case by the contents of an API query,
e.g. mr2208fw.rom

options: {
file: 'mr2208fw.rom',
downloadDir: '/opt/downloads',
adapter: '0',
commands: [

'sudo /opt/MegaRAID/storcli/storcli64 /c0 download file=/opt/downloads/
→˓mr2208fw.rom noverchk',

'sudo /opt/MegaRAID/MegaCli/MegaCli64 -AdpSetProp -BatWarnDsbl 1 -a0',
]

}

Task Rendering Features

For a full list of Mustache rendering features, including specifying conditionals and iterators, see the Mustache man
page

Task templates also expand the capabilities of Mustache templating by adding the additional capabilities of Fallback
Rendering and Nested Rendering, as documented below.

Fallback Rendering

Multiple values can be specified within the curly braces, separated by one or two ‘|’ characters (newlines are optional
as well after the pipe character). In the case that the first value does not exist, the second one will be used, and so on.
Values that are not prefixed by a context field (e.g. ‘options.’, ‘context.’ will be rendered as a plain string)

138 Chapter 1. Contents

http://mustache.github.io/mustache.5.html
http://mustache.github.io/mustache.5.html


RackHD Documentation, Release 2.0

// Unrendered
{

<rest of task definition>
options: {

fallbackOption: 'this is a fallback option',
value: '{{ options.doesNotExist || options.fallbackOption }}'

}
}
// Rendered
{

<rest of task definition>
options: {

fallbackOption: 'this is a fallback option',
value: 'this is a fallback option'

}
}
// Unrendered, with fallback being a string
{

<rest of task definition>
options: {

value: '{{ options.doesNotExist || fallbackString }}'
}

}
// Rendered
{

<rest of task definition>
options: {

value: 'fallbackString'
}

}

Nested Rendering

Template rendering can go many levels deep. So if the rendered result of a template is itself another template, then
rendering will continue until all values have been resolved, for example:

// Unrendered
{

<rest of task definition>
options: {

value1: 'value1',
value2: '{{ options.value1 }}',
value3: 'a value: {{ options.value2 }}'

}
}
// Rendered
{

<rest of task definition>
options: {

value1: 'value1',
value2: 'value1',
value3: 'a value: value1'

}
}

More examples

This task makes use of both template conditionals and iterators to generate a sequence of shell commands based on
the options the task is created with.

1.6. RackHD API, Data Model, Feature 139



RackHD Documentation, Release 2.0

{
"friendlyName": "Delete RAID via Storcli",
"injectableName": "Task.Raid.Delete.MegaRAID",
"implementsTask": "Task.Base.Linux.Commands",
"options": {

"deleteAll": true,
"controller": 0,
"raidIds": [], //[0,1,2]
"path": "/opt/MegaRAID/storcli/storcli64",
"commands": [

"{{#options.deleteAll}}" +
"sudo {{options.path}} /c{{options.controller}}/vall del force" +

"{{/options.deleteAll}}" +
"{{^options.deleteAll}}{{#options.raidIds}}" +

"sudo {{options.path}} /c{{options.controller}}/v{{.}} del force;" +
"{{/options.raidIds}}{{/options.deleteAll}}"

]
},
"properties": {}

}

If options.deleteAll is true, options.commands will be rendered as:

[
"sudo /opt/MegaRAID/storcli/storcli64 /c0/vall del force"

]

If a user overrides deleteAll to be false, and raidIds to be [0,1,2], then options.commandswill become:

[
"sudo /opt/MegaRAID/storcli/storcli64 /c0/v0 del force;sudo /opt/MegaRAID/storcli/

→˓storcli64 /c0/v1 del force;sudo /opt/MegaRAID/storcli/storcli64 /c0/v2 del force;"
]

Task Timeouts

In the task options object, a magic value _taskTimeout can be used to specify a maximum amount of time a task may
be run, in milliseconds. By default, this value is equal to 24 hours. To specify an infinite timeout, a value of 0 or -1
may be used.

{
"options": {

"_taskTimeout": 3600000 // 1 hour timeout (in ms)
}

}

{
"options": {

"_taskTimeout": -1 // no timeout
}

}

For backwards compatibility reasons, task timeouts can also be specified via the schedulerOverriddes option:

140 Chapter 1. Contents



RackHD Documentation, Release 2.0

{
"options": {

"schedulerOverrides": {
"timeout": 3600000

}
}

}

If a task times out, it will cancel itself with a timeout error, and the task state in the database will equal “timeout”. The
workflow engine will treat a task timeout as a failure and handle graph execution according to whether any other tasks
handle a timeout exit value.

API Commands for Tasks

Get Available Tasks in the Library

GET /api/current/workflows/tasks/

curl <server>/api/current/workflows/tasks/

Create a Task Definition or a Base Task Definition

PUT /api/current/workflows/tasks
Content-Type: application/json

curl -X PUT \
-H 'Content-Type: application/json' \
-d <task definition>
<server>/api/current/workflows/tasks

Task Annotation

The RackHD Task Annotation is a schema for validating running tasks in the RackHD workflow engine, and is also
used to provide self-hosted task documentation. Our build processes generate the files for this documentation.

Tasks that have been annotated have schema defined for them in the on-tasks repository under the directory lib/task-
data/schemas using JSON Schema

How to Build Task Annotation Manually

git clone https://github.com/RackHD/on-http
cd on-http
npm install
npm run taskdoc

You can access it via http(s)://<server>:<port>/taskdoc, when on-http service is running.

For example:

1.6. RackHD API, Data Model, Feature 141

https://github.com/RackHD/on-tasks
https://github.com/RackHD/on-tasks/tree/master/lib/task-data/schemas
https://github.com/RackHD/on-tasks/tree/master/lib/task-data/schemas
http://json-schema.org/


RackHD Documentation, Release 2.0

1.6.11 Task Jobs

Table of Contents

• Task Jobs

A job is a javascript subclass with a run function that can be referenced by a string. When a new task is created, and
all of its validation and setup logic handled, the remainder of its responsibility is to instantiate a new job class instance
for its specified job (passing down the options provided in the definition to the job constructor) and run that job.

Defining a Job

To create a job, define a subclass of Job.Base that has a method called _run and calls this._done() somewhere, if the
job is not one that runs indefinitely.

// Setup injector
module.exports = jobFactory;
di.annotate(jobFactory, new di.Provide('Job.example'));
di.annotate(jobFactory, new di.Inject('Job.Base');

// Dependency context
function jobFactory(BaseJob) {

(continues on next page)

142 Chapter 1. Contents

https://github.com/RackHD/on-tasks/blob/master/lib/jobs/base-job.js


RackHD Documentation, Release 2.0

(continued from previous page)

// Constructor
function Job(options, context, taskId) {

Job.super_.call(this, logger, options, context, taskId);
}
util.inherits(Job, BaseJob);

// _run function called by base job
Job.prototype._run = function _run() {

var self = this;
doWorkHere(args, function(err) {

if (err) {
self._done(err);

} else {
self._done();

}
});

}

return Job;
}

Many jobs are event-based by nature, so the base job provides many helpers for assigning callbacks to a myriad of
AMQP events published by RackHD services, such as DHCP requests from a specific mac address, HTTP downloads
from a specific IP, template rendering requests, etc.

1.6.12 SKUs

Table of Contents

• SKUs

– Package Support (skupack)

– API commands

– SKU JSON format

– SKU Pack tar.gz format

– SKU Pack config.json format

The SKU API provides functionality to categorize nodes into groups based on data present in a node’s catalogs. SKU
matching is done using a series of rules. If all rules of a given SKU match the latest version of a node’s catalog set,
then that SKU will be assigned to the node.

Upon discovering a node, the SKU will be assigned based on all existing SKU definitions in the system. SKUs for all
nodes will be re-generated whenever a SKU definition is added, updated or deleted.

A default graph can also be assigned to a SKU. When a node is discovered that matches the SKU, the specified graph
will be executed on the node.

Example

With a node that has the following catalog fields:

1.6. RackHD API, Data Model, Feature 143



RackHD Documentation, Release 2.0

{
"source": "dmi",
"data": {

"Base Board Information": {
"Manufacturer": "Intel Corporation"

}
},
"memory": {

"total": "32946864kB"
"free": "31682528kB"

}
/* ... */

}

We could match against these fields with this SKU definition:

{
"name": "Intel 32GB RAM",
"rules": [
{

"path": "dmi.Base Board Information.Manufacturer",
"contains": "Intel"

},
{

"path": "dmi.memory.total",
"equals": "32946864kB"

}
]

}

In both cases, the “path” string starts with “dmi” to signify that the rule should apply to the catalog with a “source”
value of “dmi”.

This example makes use of the “contains” and “equals” rules. See the table at the bottom of this document for a list of
additional validation rules that can be applied.

Package Support (skupack)

The SKU package API provides functionality to override the set of files served to a node by on-http with SKU specific
files. If a SKU requires additional operations during OS provisioning, the SKU package can be used to serve out SKU
specific installation scripts that override the default scripts and perform those operations.

The SKU package can be upload to a specific SKU id or it can be bundled with a set of rules to register a SKU during
the package upload.

API commands

When running the on-http process, these are some common API commands you can send.

Create a New SKU with a Node

POST /api/current/skus
{

"name": "Intel 32GB RAM",
"rules": [
{

(continues on next page)

144 Chapter 1. Contents



RackHD Documentation, Release 2.0

(continued from previous page)

"path": "dmi.Base Board Information.Manufacturer",
"contains": "Intel"

},
{

"path": "ohai.dmi.memory.total",
"equals": "32946864kB"

}
],
"discoveryGraphName": "Graph.InstallCoreOS",
"discoveryGraphOptions": {
"username": "testuser",
"password": "hello",
"hostname": "mycoreos"

}
}

{
"name": "Intel 32GB RAM",
"rules": [
{

"path": "dmi.dmi.base_board.manufacturer",
"contains": "Intel"

},
{

"path": "dmi.memory.total",
"equals": "32946864kB"

}
],
"discoveryGraphName": "Graph.InstallCoreOS",
"discoveryGraphOptions": {
"username": "testuser",
"password": "hello",
"hostname": "mycoreos"

},
"createdAt": "2015-02-11T23:39:38.143Z",
"updatedAt": "2015-02-11T23:39:38.143Z",
"id": "54dbe83a380cc102b61e0f75"

}

Create a SKU to Auto-Configure IPMI Settings

POST /api/current/skus
{

"name": "Default IPMI settings for Quanta servers",
"discoveryGraphName": "Graph.Obm.Ipmi.CreateSettings",
"discoveryGraphOptions": {

"defaults": {
"user": "admin",
"password": "admin"

}
},
"rules": [

{
"path": "bmc.IP Address"

},
{

(continues on next page)

1.6. RackHD API, Data Model, Feature 145



RackHD Documentation, Release 2.0

(continued from previous page)

"path": "dmi.Base Board Information.Manufacturer",
"equals": "Quanta"

}
]

}

Get List of SKUs

GET /api/current/skus

curl <server>/api/current/skus

Get Definition for a Single SKU

GET /api/current/skus/:id

curl <server>/api/current/skus/<skuid>

Update a Single SKU

PATCH /api/current/skus/:id
{

"name": "Custom SKU Name"
}

curl -X PATCH \
-H 'Content-Type: application/json' \
-d '{"name":"Custom SKU Name"}' \
<server>/api/current/skus/<skuid>

Delete a Single SKU

DELETE /api/current/skus/:id

curl -X DELETE <server>/api/current/skus/<skuid>

Register a new SKU with a pack

POST /api/current/skus/pack

curl -X POST --data-binary @pack.tar.gz <server>/api/current/skus/pack

Add a SKU pack

PUT /api/current/skus/:id/pack

curl -T pack.tar.gz <server>/api/current/skus/<skuid>/pack

Delete a SKU pack

DELETE /api/current/skus/:id/pack

curl -X DELETE <server>/api/current/skus/<skuid>/pack

146 Chapter 1. Contents



RackHD Documentation, Release 2.0

SKU JSON format

SKUs are defined via JSON, with these required fields:

Name Type Flags Description
name String required,

unique
Unique name identifying this SKU definition.

rules Ob-
ject[]

required Array of validation rules that define the SKU.

rules[].path String required Path into the catalog to validate against.
rules[].equals * optional Exact value to match against.
rules[].in *[] optional Array of possibly valid values.
rules[].notIn *[] optional Array of possibly invalid values.
rules[].contains String optional A string that the value should contain.
rules[].notContains String optional A string that the value should not contain.
rules[].greaterThan Num-

ber
optional Number that the value should be greater than.

rules[].lessThan Num-
ber

optional Number that the value should be less than.

rules[].min Num-
ber

optional Number that the value should be greater than or equal to.

rules[].max Num-
ber

optional Number that the value should be less than or equal to.

rules[].regex String optional A regular expression that the value should match.
rules[].notRegex String optional A regular expression that the value should not match.
discoveryGraphName String optional Name of graph to run against matching nodes on discov-

ery.
discoveryGraphOp-
tions

Object optional Options to pass to the graph being run on node discovery.

SKU Pack tar.gz format

The SKU pack requires the ‘config.json’ to be at the root of the tar.gz file. A typical package may have static, template,
profile, workflow and task directories.

tar tzf pack.tar.gz:
config.json
static/
static/common/
static/common/discovery.docker.tar.xz
templates/
templates/ansible.pub
templates/esx-ks

SKU Pack config.json format

{
"name": "Intel 32GB RAM",
"rules": [
{

"path": "dmi.Base Board Information.Manufacturer",

(continues on next page)

1.6. RackHD API, Data Model, Feature 147



RackHD Documentation, Release 2.0

(continued from previous page)

"contains": "Intel"
},
{

"path": "dmi.memory.total",
"equals": "32946864kB"

}
],
"httpStaticRoot": "static",
"httpTemplateRoot": "templates",
"workflowRoot": "workflows",
"taskRoot": "tasks",
"httpProfileRoot": "profiles",
"skuConfig" : {
"key": "value",
"key2" : {

"key": "value"
}

}
}

Key Description
httpStaticRoot Contains static files to be served by on-http
httpTemplateRoot Contains template files to be loaded into the templates library
workflowRoot Contains graphs to be loaded into the workflow library
taskRoot Contains tasks to be loaded into the tasks library
httpProfileRoot Contains profile files to be loaded into the profiles library
skuConfig Contains sku specific configuration to be loaded into the environment collection
version (optional) Contains a version string for display use
description (optional) Contains a description string for display use

1.6.13 Tags

Table of Contents

• Tags

– API commands

– Tag JSON format

The Tag API provides functionality to automatically categorize nodes into groups based on data present in a node’s
catalogs or by manually assigning a tag to a node. When done automatically, tag matching is done using a series of
rules. If all rules of a given tag match the latest version of a node’s catalog set, then that tag will be assigned to the
node. A node may be assigned many tags, both automatically through rules matching or manually by the user.

Upon discovering a node, the tag will be assigned based on all existing tag definitions in the system. Tags for all nodes
will be re-generated whenever a tag definition is added. Tags that are currently assigned to a node are not automatically
removed from nodes when the rules backing a tag are deleted.

Example

With a node that has the following catalog fields:

148 Chapter 1. Contents



RackHD Documentation, Release 2.0

{
"source": "dmi",
"data": {

"Base Board Information": {
"Manufacturer": "Intel Corporation"

}
},
"memory": {

"total": "32946864kB"
"free": "31682528kB"

}
/* ... */

}

We could match against these fields with this tag definition:

{
"name": "Intel 32GB RAM",
"rules": [
{

"path": "dmi.Base Board Information.Manufacturer",
"contains": "Intel"

},
{

"path": "dmi.memory.total",
"equals": "32946864kB"

}
]

}

In both cases, the “path” string starts with “dmi” to signify that the rule should apply to the catalog with a “source”
value of “dmi”.

This example makes use of the “contains” and “equals” rules. See the table at the bottom of this document for a list of
additional validation rules that can be applied.

API commands

When running the on-http process, these are some common API commands you can send.

If you want to view or manipulate tags directly on nodes, please see the API notes at Node Tags.

Create a New tag

POST /api/current/tags
{

"name": "Intel-32GB-RAM",
"rules": [
{

"path": "dmi.Base Board Information.Manufacturer",
"contains": "Intel"

},
{

"path": "ohai.dmi.memory.total",
"equals": "32946864kB"

}

(continues on next page)

1.6. RackHD API, Data Model, Feature 149



RackHD Documentation, Release 2.0

(continued from previous page)

]
}

Get List of tags

GET /api/current/tags

curl <server>/api/current/tags

Get Definition for a Single tag

GET /api/current/tags/:tagname

curl <server>/api/current/tags/<tagname>

Delete a Single tag

DELETE /api/current/tags/:tagname

curl -X DELETE <server>/api/current/tags/<tagname>

List nodes with a tag

GET /api/current/tags/:tagname/nodes

curl <server>/api/current/tags/<tagname>/nodes

Post a workflow to all nodes with a tag

POST /api/current/tags/:tagname/nodes/workflows

curl -H "Content-Type: application/json" -X POST -d @options.json <server>/api/
→˓current/tags/<tagname>/nodes/workflows

Tag JSON format

Tag objects are defined via JSON using these fields:

150 Chapter 1. Contents



RackHD Documentation, Release 2.0

Name Type Flags Description
name String required, unique Unique name identifying this SKU definition.
rules Object[] required Array of validation rules that define the SKU.
rules[].path String required Path into the catalog to validate against.
rules[].equals * optional Exact value to match against.
rules[].in *[] optional Array of possibly valid values.
rules[].notIn *[] optional Array of possibly invalid values.
rules[].contains String optional A string that the value should contain.
rules[].notContains String optional A string that the value should not contain.
rules[].greaterThan Number optional Number that the value should be greater than.
rules[].lessThan Number optional Number that the value should be less than.
rules[].min Number optional Number that the value should be greater than or equal to.
rules[].max Number optional Number that the value should be less than or equal to.
rules[].regex String optional A regular expression that the value should match.
rules[].notRegex String optional A regular expression that the value should not match.

1.6.14 Lookup Table

Table of Contents

• Lookup Table

– API commands

Lookup is a mechaniasm that RackHD used to correlate ID, MAC address and IP adress for each node, so that RackHD
can easily map one element to the others.

API commands

REST API (v2.0) - lookup table

Dump the IP address in the lookup table (where RackHD maintain the nodes IP), by running the following command.

curl localhost:9090/api/2.0/lookups | jq '.'

1.6.15 Northbound Event Notification

1.6. RackHD API, Data Model, Feature 151



RackHD Documentation, Release 2.0

Table of Contents

• Northbound Event Notification

– Events Payloads

– Events via AMQP

* AMQP Exchange and Routing Key

* AMQP Routing Key Filter

– Events via Hook

* Register Web Hooks

* Event Filter Rules

* Web Hook APIs

– Redfish Alert Notification

* Description

* Configuring the Redfish endpoint

* Alert message

* AMQP

RackHD supports event notification via both web hook and AMQP.

A web hook allows applications to subscribe certain RackHD published events by configured URL, when one of the
subscribed events is triggered, RackHD will send a POST request with event payload to configured URL.

RackHD also publishes defined events over AMQP, so subscribers to RackHD’s instance of AMQP don’t need to
register a webhook URL to get events. The AMQP events can be prolific, so we recommend that consumers filter
events as they are received to what is desired.

Events Payloads

All published external events’ payload formats are common, the event attributes are as below:

152 Chapter 1. Contents



RackHD Documentation, Release 2.0

At-
tribute

Type Description

ver-
sion

String Event payload format version.

type String It could be one of the values: heartbeat, node, polleralert, graph.
ac-
tion

String a verb or a composition of component and verb which indicates what happened, it’s associated with
the type attribute.

sever-
ity

String Event severity, it could be one of the values: critical, warning, information.

typeId String It’s associated with the type attribute. It could be graph ‘Id’ for graph type, poller ‘Id’ for polleralert
type, <fqdn>.<service name> for heartbeat event, node ‘Id’ for node type. Please see table for more
details .

cre-
ate-
dAt

String The time event happened.

nodeId String The node Id, it’s null for ‘heartbeat’ event.
data Ob-

ject
Detail information are included in this attribute.

The table of type, typeId, action and severity for all external events

1.6. RackHD API, Data Model, Feature 153



RackHD Documentation, Release 2.0

type typeId action severity Description
heartbeat <fqdn>.<service

name>
updated information Each running

RackHD service
will publish a pe-
riodic heartbeat
event message to
notify that service is
running.

polleralert the ‘Id’ of poller sel.updated related to sel rules,
it could be one of
the values: criti-
cal, warning, infor-
mation

Triggered when
condition rules of
sel alert defined
in SKU PACK is
matched

sdr.updated information Triggered when sdr
information is up-
dated.

fabricservice.updated information Triggered when fab-
ricservice informa-
tion is updated.

pdupower.updated information Triggered when pdu
power state infor-
mation is changed.

chassispower.updated information Triggered when
chassis power state
information is
changed.

snmp.updated related to snmp
rules, it could be
one of the values:
critical, warning,
information

Triggered when
condition rules of
snmp alert defined
in SKU PACK is
matched

graph the ‘Id’ of graph started information Triggered when
graph started.

finished information Triggered when
graph finished.

progress.updated information Triggered when
long task’s progress
information is
updated.

node the ‘Id’ of node discovered information Triggered in node’s
discovery process,it
has two cases:

• Automatic
discovery

• Passive dis-
covery by
post a node
by REST API

added information Triggered when a
rack node is added
to database by
REST API

removed information Triggered when
node is deleted by
REST API

sku.assigned information Triggered when
node’s sku field is
assigned.

sku.unassigned information Triggered when
node’s sku field is
unassigned.

sku.updated information Triggered when
node’s sku field is
updated.

obms.assigned information Triggered when
node’s obms field is
assigned.

obms.unassigned information Triggered when
node’s obms field is
unassigned.

obms.updated information Triggered when
node’s obms field is
updated.

accessible information Triggered when
node telemetry
OBM service
(IPMI or SNMP) is
accessible

inaccessible information Triggered when
node telemetry
OBM service
(IPMI or SNMP) is
inaccessible

alerts could be one: infor-
mation, warning, or
critical

Triggered when
rackHD receives a
redfish alert

154 Chapter 1. Contents



RackHD Documentation, Release 2.0

Example of heartbeat event payload:

{
"version": "1.0",
"type": "heartbeat",
"action": "updated",
"typeId": "kickseed.example.com.on-taskgraph",
"severity": "information",
"createdAt": "2016-07-13T14:23:45.627Z",
"nodeId": "null",
"data": {

"name": "on-taskgraph",
"title": "node",
"pid": 6086,
"uid": 0,
"platform": "linux",
"release": {

"name": "node",
"lts": "Argon",
"sourceUrl": "https://nodejs.org/download/release/v4.7.2/node-v4.7.2.tar.

→˓gz",
"headersUrl": "https://nodejs.org/download/release/v4.7.2/node-v4.7.2-

→˓headers.tar.gz"
},
"versions": {

"http_parser": "2.7.0",
"node": "4.7.2",
"v8": "4.5.103.43",
"uv": "1.9.1",
"zlib": "1.2.8",
"ares": "1.10.1-DEV",
"icu": "56.1",
"modules": "46",
"openssl": "1.0.2j"

},
"memoryUsage": {

"rss": 116531200,
"heapTotal": 84715104,
"heapUsed": 81638904

},
"currentTime": "2017-01-24T07:18:49.236Z",
"nextUpdate": "2017-01-24T07:18:59.236Z",
"lastUpdate": "2017-01-24T07:18:39.236Z",
"cpuUsage": "NA"

}
}

Example of node discovered event payload:

{
"type": "node",
"action": "discovered",
"typeId": "58aa8e54ef2b49ed6a6cdd4c",
"nodeId": "58aa8e54ef2b49ed6a6cdd4c",
"severity": "information",
"data": {

"ipMacAddresses": [
{

(continues on next page)

1.6. RackHD API, Data Model, Feature 155



RackHD Documentation, Release 2.0

(continued from previous page)

"ipAddress": "172.31.128.2",
"macAddress": "2c:60:0c:ad:d5:ba"

},
{

"macAddress": "90:e2:ba:91:1b:e4"
},
{

"macAddress": "90:e2:ba:91:1b:e5"
},
{

"macAddress": "2c:60:0c:c0:a8:ce"
}

],
"nodeId": "58aa8e54ef2b49ed6a6cdd4c",
"nodeType": "compute"

},
"version": "1.0",
"createdAt": "2017-02-20T06:37:23.775Z"

}

Events via AMQP

AMQP Exchange and Routing Key

The change of resources managed by RackHD could be retrieved from AMQP messages.

• Exchange: on.events

• Routing Key <type>.<action>.<severity>.<typeId>.<nodeId>

ALl the fields in routing key exists in the common event payloads event_payload.

Examples of routing key:

Heartbeat event routing key of on-tftp service:

heartbeat.updated.information.kickseed.example.com.on-tftp

Polleralert sel event routing key:

polleralert.sel.updated.critical.44b15c51450be454180fabc.57b15c51450be454180fa460

Node discovered event routing key:

node.discovered.information.57b15c51450be454180fa460.57b15c51450be454180fa460

Graph event routing key:

graph.started.information.35b15c51450be454180fabd.57b15c51450be454180fa460

AMQP Routing Key Filter

All the events could be filtered by routing keys, for example:

All services’ heartbeat events:

156 Chapter 1. Contents



RackHD Documentation, Release 2.0

$ sudo node sniff.js "on.events" "heartbeat.#"

All nodes’ discovered events:

$ sudo node sniff.js "on.events" "#.discovered.#"

‘sniff.js’ is a tool located at https://github.com/RackHD/on-tools/blob/master/dev_tools/README.md

Events via Hook

Register Web Hooks

The web hooks used for subscribing event notification could be registered by POST <server>/api/current/
hooks API as below

curl -H "Content-Type: application/json" -X POST -d @payload.json <server>api/current/
→˓hooks

The payload.json attributes in the example above are as below:

At-
tribute

Type Flags Description

url String re-
quired

The hook url that events are notified to. Both http and https urls are supported. url
must be unique.

name String op-
tional

Any name user specified for the hook.

filters Ar-
ray

op-
tional

An array of conditions that decides which events should be notified to hook url.

When a hook is registered and eligible events happened, RackHD will send a POST request to the hook url. POST
request’s Content-Type will be application/json, and the request body be the event payload.

An example of payload.json with minimal attributes:

{
"url": "http://www.abc.com/def"

}

When multiple hooks are registered, a single event can be sent to multiple hook urls if it meets hooks’ filtering
conditions.

Event Filter Rules

The conditions of which events should be notified could be specified in the filters attribute in the hook_payload, when
filters attribute is not specified, or it’s empty, all the events will be notified to the hook url.

The filters attribute is an array, so multiple filters could be specified. The event will be sent as long as any filter
condition is satisfied, even if the conditions may have overlaps.

The filter attributes are type, typeId, action, severity and nodeId listed in event_payload. Filtering by data is not
supported currently. Filtering expression of hook filters is based on javascript regular expression, below table describes
some base operations for hook filters:

1.6. RackHD API, Data Model, Feature 157

https://github.com/RackHD/on-tools/blob/master/dev_tools/README.md


RackHD Documentation, Release 2.0

Description Example Eligible Events
Attribute equals some value {“action”: “^discovered$”} Events with action equals discovered
Attribute can be any of
specified value.

{“action”: “discov-
ered|updated”}

Events with action equals either discovered or
updated

Attribute can not be any of
specified value.

{“action”: “[^(discov-
ered|updated)]”}

Events with action equals neither discovered nor
updated

Multiple attributes must
meet specified values.

{“action”: “[^(discov-
ered|updated)]”, “type”:
“node”}

Events with type equals node while action
equals neither discovered nor updated

An example of multiple filters:

{
"name": "event sets",
"url": "http://www.abc.com/def",
"filters": [

{
"type": "node",
"nodeId": "57b15c51450be454180fa460"

},
{

"type": "node",
"action": "discovered|updated",

}
]

}

Web Hook APIs

Create a new hook

POST /api/2.0/hooks
{

"url": "http://www.abc.com/def"
}

Delete an existing hook

DELETE /api/2.0/hooks/:id

Get a list of hooks

GET /api/2.0/hooks

Get details of a single hook

GET /api/2.0/hooks/:id

Update an existing hook

PATCH /api/2.0/hooks/:id
{

"name": "New Hook"
}

158 Chapter 1. Contents



RackHD Documentation, Release 2.0

Redfish Alert Notification

Description

RackHD is enabled to receive redfish based notifications. It is possible to configure a redfish endpoint to send alerts to
RackHD. When RackHD receives an alert, it determines which node issued the alert and then it adds some additional
context such as nodeId, service tag, etc. Lastly, RackHD publishes the alert to AMQP and Web Hook.

Configuring the Redfish endpoint

If the endpoint is redfish enabled and supports the Resfish EventService, it is possible to configure the endpoint to
send the alerts to RackHD. Please note that the “Destination” property in the example below should be a reference to
RackHD.

POST /redfish/v1/EventService/Subscriptions
{

"Context": "context string",
"Description": "Event Subscription Details",
"Destination": "https://10.240.19.226:8443/api/2.0/notification/alerts",
"EventTypes": [
"ResourceAdded",
"StatusChange",

"Alert"
],
"Id": "id",
"Name": "name",
"Protocol": "Redfish"

}

If the node is a Dell node, it is possible to post the Graph.Dell.Configure.Redfish.Alerting workflow. The workflow
will:

1- Enable Alerts for the Dell node. Equivalent to running “set iDRAC.IPMILan.AlertEnable 1” racadam command.

2- Enable redfish alerts. Equivalent to running “eventfilters set -c idrac.alert.all -a none -n redfish-events” racadam
command.

3- Disable the “Audit” info alerts. Equivalent to running “eventfilters set -c idrac.alert.audit.info -a none -n none”
racadam command.

The workflow will run the default values if the node’s obm is set and the “rackhdPublicIp” property is set in the
rackHD config.json file. Below is an example the default settings:

{
"@odata.context": "/redfish/v1/$metadata#EventDestination.EventDestination",
"@odata.id": "/redfish/v1/EventService/Subscriptions/b50106d4-32c6-11e7-8b05-

→˓64006ac35232",
"@odata.type": "#EventDestination.v1_0_2.EventDestination",
"Context": "RackhHD Subscription",
"Description": "Event Subscription Details",
"Destination": "https://10.1.1.1:8443/api/2.0/notification/alerts",
"EventTypes": [
"ResourceAdded",
"StatusChange",
"Alert"

],

(continues on next page)

1.6. RackHD API, Data Model, Feature 159



RackHD Documentation, Release 2.0

(continued from previous page)

"EventTypes@odata.count": 3,
"Id": "b50106d4-32c6-11e7-8b05-64006ac35232",
"Name": "EventSubscription b50106d4-32c6-11e7-8b05-64006ac35232",
"Protocol": "Redfish"

}

It is possible to overwrite any of the values by adding it to payload when posting the Graph.Configure.Redfish.Alerting
workflow. Here is an instance of the payload:

{
"options": {

"redfish-subscribtion": {
"url": "https://10.240.19.130/redfish/v1/EventService/

→˓Subscriptions",
"credential": {

"username": "root",
"password": "1234567"

},
"data": {

"Context": "context string",
"Description": "Event Subscription Details",
"Destination": "https://1.1.1.1:8443/api/2.0/notification/

→˓alerts",
"EventTypes": [

"StatusChange",
"Alert"

],
"Id": "id",
"Name": "name",
"Protocol": "Redfish"

}

}
}

}

Alert message

In addition to the redfish alert message, RackHD adds the following properties: “sourceIpAddress” (of the BMC),
“nodeId”,”macAddress” (of the BMC), “ChassisName”, “ServiceTag”, “SN”.

{
"type": "node",
"action": "alerts",
"data": {

"Context": "context string",
"EventId": "8689",
"EventTimestamp": "2017-04-03T10:07:32-0500",
"EventType": "Alert",
"MemberId": "7e675c8e-127a-11e7-9fc8-64006ac35232",
"Message": "The coin cell battery in CMC 1 is not working.",
"MessageArgs": ["1"],
"MessageArgs@odata.count": 1,
"MessageId": "CMC8572",
"Severity": "Critical",

(continues on next page)

160 Chapter 1. Contents



RackHD Documentation, Release 2.0

(continued from previous page)

"sourceIpAddress": "10.240.19.130",
"nodeId": "58d94cec316779d4126be134",
"sourceMacAddress ": "64:00:6a:c3:52:32",
"ChassisName": "PowerEdge R630",
"ServiceTag": "4666482",
"SN": "CN747515A80855"

},
"severity": "critical",
"typeId": "58d94cec316779d4126be134",
"version": "1.0",
"createdAt": "2017-04-03T14:11:46.245Z"

}

AMQP

The messages are pulished to:

• Exchange: on.events

• Routing Key: node.alerts.<severity>.<typeId>.<nodeId>

1.6.16 Southbound Notification API

Table of Contents

• Southbound Notification API

– How does it work

– API commands

– Use notification API in OS installation

The southbound notification API provides functionality for sending notifications to RackHD from a node. For example,
a node could send notification to inform RackHD that OS installation has finished.

The notification API is only available from the southbound.

How does it work

When a node calls a notification API, the RackHD on-http process will get acknowledged and then send a AMQP
message to an exchange named ‘on.events’, with routing key set to ‘notification’ or ‘notification.<id>’ depending on
the parameters sent along when calling the notification API.

Any task running in on-taskgraph process that is expecting a notification will need to subscribe the AMQP message.

For example, the install-os task will subscribe the ‘on.events’ AMQP message with routing key ‘notification.<id>’.
A node will call the notification API at the end of the OS installation thus on-http will publish a AMQP message
accordingly. The install-os task will then receive the message and finish itself. Please refer to the diagram below.

1.6. RackHD API, Data Model, Feature 161



RackHD Documentation, Release 2.0

API commands

When running the on-http process, these are some common API commands you can send:

Send notification targeting a node

POST /api/current/notification?nodeId=<id>

curl -X POST -H "Content-Type:application/json" \
<server>/api/current/notification?nodeId=5542b78c130198aa216da3ac

It will also work if the nodeId parameter is set in the request body.

curl -X POST -H "Content-Type:application/json" <server>/api/current/notification \
-d '{"nodeId": "5542b78c130198aa216da3ac"}'

Additional parameters can be sent as well, as long as the receiver task knows how to use those parameters.

curl -X POST -H "Content-Type:application/json" \
<server>/api/current/notification?nodeId=5542b78c130198aa216da3ac \
&progress=50%status=inprogress

Send a broadcast notification

A broadcast notification will trigger a AMQP message with routing key set to ‘notification’, without the tailing ‘.<id>’.

POST /api/current/notification

162 Chapter 1. Contents



RackHD Documentation, Release 2.0

curl -X POST -H "Content-Type:application/json" <server>/api/current/notification

Use notification API in OS installation

A typical OS installation needs two notifications. The first one notifies that OS has been installed to the disk on the
target node. The second one notifies that the OS has been successfully booted on the target node.

The first notificatioin is typically sent in the ‘postinstall’ section of the kickstart file. For example: https://github.com/
RackHD/on-http/blob/master/data/templates/install-photon/photon-os-ks#L76

the second notification is typically sent in the RackHD callback script. For example: https://github.com/RackHD/
on-http/blob/master/data/templates/install-photon/photon-os.rackhdcallback#L38

1.6.17 Features

SSDP/UPnP

Table of Contents

• SSDP/UPnP

– Northbound M-SEARCH Queries

– Southbound M-SEARCH Queries

– Southbound Advertisement Handler

– Configuration Options

RackHD on-http service uses SSDP (Simple Service Discovery Protocol) to advertise its Restful API services and
device descriptions. The on-http service will respond to M-SEARCH queries from SSDP enabled clients for requested
discovery.

Northbound M-SEARCH Queries

• Request all: ssdp:all

• Request Root device description: upnp:rootdevice

• Request on-http device description: urn:schemas-upnp-org:device:on-http:1

• Request API v1.1 service: urn:schemas-upnp-org:service:api:1.1

• Request API v2.0 service: urn:schemas-upnp-org:service:api:2.0

• Request Redfish v1.0 service: urn:dmtf-org:service:redfish-rest:1.0

• Example Response:

{
"ST": "urn:dmtf-org:service:redfish-rest:1.0",
"USN": "564d4f6e-a405-706e-38ec-da52ad81e97a::urn:dmtf-org:service:redfish-rest:1.0

→˓",
"LOCATION": "http://10.2.3.1:8080/redfish/v1/",
"CACHE-CONTROL": "max-age=1800",

(continues on next page)

1.6. RackHD API, Data Model, Feature 163

https://github.com/RackHD/on-http/blob/master/data/templates/install-photon/photon-os-ks#L76
https://github.com/RackHD/on-http/blob/master/data/templates/install-photon/photon-os-ks#L76
https://github.com/RackHD/on-http/blob/master/data/templates/install-photon/photon-os.rackhdcallback#L38
https://github.com/RackHD/on-http/blob/master/data/templates/install-photon/photon-os.rackhdcallback#L38
https://en.wikipedia.org/wiki/Simple_Service_Discovery_Protocol


RackHD Documentation, Release 2.0

(continued from previous page)

"DATE": "Tue, 31 May 2016 18:43:29 GMT",
"SERVER": "node.js/5.0.0 uPnP/1.1 on-http",
"EXT": ""

}

Southbound M-SEARCH Queries

• Request all: ssdp:all

• Request API v1.1 service: urn:schemas-upnp-org:service:api:1.1:southbound

• Request API v2.0 service: urn:schemas-upnp-org:service:api:2.0:southbound

• Request Redfish v1.0 service: urn:dmtf-org:service:redfish-rest:1.0:southbound

• Example Response:

{
"ST": "urn:schemas-upnp-org:service:api:2.0:southbound",
"USN": "564d4f6e-a405-706e-38ec-da52ad81e97a::urn:schemas-upnp-org:service:api:2.

→˓0:southbound",
"LOCATION": "http://172.31.128.1:9080/api/2.0/",
"CACHE-CONTROL": "max-age=1800",
"DATE": "Tue, 31 May 2016 18:43:29 GMT",
"SERVER": "node.js/5.0.0 uPnP/1.1 on-http",
"EXT": ""

}

Southbound Advertisement Handler

RackHD will poll for SSDP/UPnP advertisements made by nodes residing on the southbound side network. For
each advertisement RackHD will publish an alert event to the on.ssdp AMQP exchange to notify layers sitting above
RackHD.

• Exchange: on.ssdp

• Routing Key prefix: ssdp.alert.*

• AMQP published message example:

{
"delivery_info": {

"consumer_tag": "None1",
"delivery_tag": 1734,
"exchange": "on.ssdp",
"redelivered": false,
"routing_key": "ssdp.alert.uuid:f40c2981-7329-40b7-8b04-

→˓27f187aecfb5::urn:schemas-upnp-org:service:ConnectionManager:1"
},
"message": {

"value": {
"headers": {

"CACHE-CONTROL": "max-age=1800",
"DATE": "Mon, 06 Jun 2016 17:09:34 GMT",
"EXT": "",

(continues on next page)

164 Chapter 1. Contents



RackHD Documentation, Release 2.0

(continued from previous page)

"LOCATION": "172.31.129.47/desc.html",
"SERVER": "node.js/0.10.25 UPnP/1.1 node-ssdp/2.7.1",
"ST": "urn:schemas-upnp-org:service:ConnectionManager:1",
"USN": "uuid:f40c2981-7329-40b7-8b04-27f187aecfb5::urn:schemas-upnp-

→˓org:service:ConnectionManager:1"
},
"info": {

"address": "172.31.129.47",
"family": "IPv4",
"port": 1900,
"size": 329

}
}

},
"properties": {

"content_type": "application/json",
"type": "Result"

}
}

Configuration Options

Related options defined in config.json. For complete examples see Configuration.

Parameter Description
enableUPnP boolean true or false to enable or disable all SSDP related server/client services.
ssdpBindAddress The bind address to send advertisements on (defaults to 0.0.0.0).

1.7 Redfish API, Data Model, Feature

1.7.1 Redfish API Overview

Table of Contents

• Redfish API Overview

– Overview

– Redfish API Example

Overview

RackHD is designed to provide a REST (Representational state transfer) architecture to provide a RESTful API.
RackHD currently has two RESTful interfaces: a Redfish API and native REST API 2.0.

The Redfish API is compliant with the Redfish specification as an additional REST API. It provides a common data
model for representing bare metal hardware, as an aggregate for multiple backend servers and systems.

The REST API 2.0 provides unique features that are not provided in the Redfish API.

1.7. Redfish API, Data Model, Feature 165



RackHD Documentation, Release 2.0

Redfish API Example

Redfish API - Chassis

List the Chassis that is managed by RackHD (equivalent to the enclosure node in REST API 2.0), by running the
following command.

curl 127.0.0.1:9090/redfish/v1/Chassis| jq '.'

Redfish API - System

1. In the rackhd-server, list the System that is managed by RackHD (equivalent to compute node in API 2.0), by
running the following command

curl 127.0.0.1:9090/redfish/v1/Systems| jq '.'

2. Use the mouse to select the System-ID as below example, then the ID will be in your clipboard. This ID will be
used in the following steps.

Redfish API - SEL Log

curl 127.0.0.1:9090/redfish/v1/systems/<System-ID>/LogServices/Sel| jq '.'

166 Chapter 1. Contents



RackHD Documentation, Release 2.0

Redfish API - CPU info

curl 127.0.0.1:9090/redfish/v1/Systems/<System-ID>/Processors/0| jq '.'

Redfish API - Helper

Show the list of RackHD Redfish APIs’ by running below command:

curl 127.0.0.1:9090/redfish/v1| jq '.'

1.7. Redfish API, Data Model, Feature 167



RackHD Documentation, Release 2.0

1.7.2 Data Model Overview

Table of Contents

• Data Model Overview

– Introduction to the Redfish data model

– Resource Map (highlights)

Introduction to the Redfish data model

• All resources linked from a Service Entry point (root) - Always located at URL: /redfish/v1

• Major resource types structured in ‘collections’ to allow for standalone, multinode,or aggregated rack-level
systems - Additional related resources fan out from members within these collections

• ComputerSystem: properties expected from an OS console - Items needed to run the “computer” - Roughly a
logical view of a computer system as seen from the OS

• Chassis: properties needed to locate the unit with your hands - Items needed to identify, install or service the
“computer” - Roughly a physical view of a computer system as seen by a human

• Managers: properties needed to perform administrative functions - aka: the systems management subsystem
(BMC)

Resource Map (highlights)

168 Chapter 1. Contents



RackHD Documentation, Release 2.0

1.8 Server Workflow Guide

1.8.1 Discovery

Refresh Node Discovery

1.8. Server Workflow Guide 169



RackHD Documentation, Release 2.0

Table of Contents

• Refresh Node Discovery

– Immediate Refresh Node Discovery

– Delayed Refresh Node Discovery

Compute type nodes can be re-discovered/refreshed either by running an immediate refresh discovery graph or a
delayed refresh discovery graph using the same nodeID from the original discovery process. The node catalog(s) will
be updated with new entries.

Immediate Refresh Node Discovery

A node can be refreshed immediately by posting to /api/2.0/workflows with a payload. The node will be rebooted
automatically and the node re-discovery process will start.

Immediate Node Re-discovery example

POST /api/2.0/workflows
{

"name": "Graph.Refresh.Immediate.Discovery",
"options": {

"reset-at-start": {
"nodeId": "<nodeId>"

},
"discovery-refresh-graph": {

"graphOptions": {
"target": "<nodeId>"

},
"nodeId": "<nodeId>"

},
"generate-sku": {

"nodeId": "<nodeId>"
},
"generate-enclosure": {

"nodeId": "<nodeId>"
},
"create-default-pollers": {

"nodeId": "<nodeId>"
},
"run-sku-graph": {

"nodeId": "<nodeId>"
},
"nodeId": "<nodeId>"

}
}

curl -X POST \
-H 'Content-Type: application/json' \
-d '{ "name":"Graph.Refresh.Immediate.Discovery",

"options": {
"reset-at-start": {

"nodeId": "<nodeId>"
},
"discovery-refresh-graph": {

(continues on next page)

170 Chapter 1. Contents



RackHD Documentation, Release 2.0

(continued from previous page)

"graphOptions": {
"target": "<nodeId>"

},
"nodeId": "<nodeId>"

},
"generate-sku": {

"nodeId": "<nodeId>"
},
"generate-enclosure": {

"nodeId": "<nodeId>"
},
"create-default-pollers": {

"nodeId": "<nodeId>"
},
"run-sku-graph": {

"nodeId": "<nodeId>"
},
"nodeId": "<nodeId>"

}
}' \

<server>/api/2.0/workflows

Delayed Refresh Node Discovery

A user can defer a node discovery by posting to /api/2.0/workflows with a payload. The user will need to manually
reboot the node after executing the API before the node re-discovery/refresh process can start.

Delayed Node Re-discovery example

POST /api/2.0/workflows
{

"name": "Graph.Refresh.Delayed.Discovery",
"options": {

"discovery-refresh-graph": {
"graphOptions": {

"target": "<nodeId>"
},
"nodeId": "<nodeId>"

},
"generate-sku": {

"nodeId": "<nodeId>"
},
"generate-enclosure": {

"nodeId": "<nodeId>"
},
"create-default-pollers": {

"nodeId": "<nodeId>"
},
"run-sku-graph": {

"nodeId": "<nodeId>"
},
"nodeId": "<nodeId>"

}
}

1.8. Server Workflow Guide 171



RackHD Documentation, Release 2.0

curl -X POST \
-H 'Content-Type: application/json' \
-d '{ "name":"Graph.Refresh.Delayed.Discovery",

"options": {
"discovery-refresh-graph": {

"graphOptions": {
"target": "<nodeId>"

},
"nodeId": "<nodeId>"

},
"generate-sku": {

"nodeId": "<nodeId>"
},
"generate-enclosure": {

"nodeId": "<nodeId>"
},
"create-default-pollers": {

"nodeId": "<nodeId>"
},
"run-sku-graph": {

"nodeId": "<nodeId>"
},
"nodeId": "<nodeId>"

}
}' \

<server>/api/2.0/workflows

Manually rebooting the node using ipmitool example

ipmitool -H <BMC host IP address> -U <username> -P <password> chassis power reset

1.8.2 OS Installation

Ubuntu Installation

RackHD Ubuntu installation support multiple versions. Please refer to Supported OS Installation Workflows to see
which versions are supported. We’ll take Ubuntu Trusty(14.04) as the example below. If you want to install another
version’s Ubuntu, please replace with corresponding version’s image, mirror, payload, etc.

Important: DNS server is required in Ubuntu installation, make sure you have put following lines in
/etc/dhcp/dhcpd.conf. 172.31.128.1 is a default option in RackHD

option domain-name-servers 172.31.128.1;
option routers 172.31.128.254;

Setup Mirror

A mirror should be setup firstly before installation. For Ubuntu, there are three ways to setup mirror.

• Local ISO mirror: Download Ubuntu ISO image, mount ISO image in a local server as the repository, http
service for this repository is provided so that a node could access without proxy.

172 Chapter 1. Contents



RackHD Documentation, Release 2.0

• Local sync mirror: Sync public site’s mirror repository to local, http service for this repository is provided so
that a node could access without proxy.

• Public mirror: The node could access a public or remote site’s mirror repository with proxy.

Note: For local mirror (ISO or sync), RackHD on-http service internally has a default file service to provide file
downloading for nodes. Its default root path is {on-http-dir}/static/http/mirrors/. You also could
use your own file service instead of the internal file service in the same server or another server, just notice that the
file service’s ip address fileServerAddress and the port fileServerPort in /opt/monorail/config.
json should be configured. For more details, please refer to Static File Service Setup. Remember to restart on-http
service after modifying /opt/monorail/config.json.

For public mirror, RackHD on-http service also internally has a default http proxy for nodes to access remote file
service. It could be configured by httpProxies in /opt/monorail/config.json. For more details, please
refer to Configuration. Remember to restart on-http service after modifying /opt/monorail/config.json.

Local ISO Mirror

Local Sync Mirror

Public Mirror

mkdir ~/iso && cd !/iso

# Download iso file
wget http://releases.ubuntu.com/14.04/ubuntu-14.04.5-server-amd64.iso

# Create mirror folder
mkdir -p /var/mirrors/ubuntu

# Replace {on-http-dir} with your own
mkdir -p {on-http-dir}/static/http/mirrors

# Mount iso
sudo mount ubuntu-14.04.5-server-amd64.iso /var/mirrors/ubuntu

# Replace {on-http-dir} with your own
sudo ln -s /var/mirrors/ubuntu {on-http-dir}/static/http/mirrors/

For Ubuntu local mirror, The mirrors are easily made by syncing public Ubuntu mirror site, on any recent distribution
of Ubuntu:

# make the mirror directory (can sometimes hit a permissions issue)
sudo mkdir -p /var/mirrors/ubuntu/14.04/mirror
# create a file in /etc/apt/mirror.list (config below)
sudo vi /etc/apt/mirror.list
# run the mirror
sudo apt-mirror

############# config ##################
#
set base_path /var/mirrors/ubuntu/14.04
#
# set mirror_path $base_path/mirror
# set skel_path $base_path/skel
# set var_path $base_path/var

(continues on next page)

1.8. Server Workflow Guide 173



RackHD Documentation, Release 2.0

(continued from previous page)

# set cleanscript $var_path/clean.sh
# set defaultarch <running host architecture>
# set postmirror_script $var_path/postmirror.sh
# set run_postmirror 0
set nthreads 20
set _tilde 0
#
############# end config ##############

deb-amd64 http://mirror.pnl.gov/ubuntu trusty main
deb-amd64 http://mirror.pnl.gov/ubuntu trusty-updates main
deb-amd64 http://mirror.pnl.gov/ubuntu trusty-security main
clean http://mirror.pnl.gov/ubuntu

#end of file
###################

Add following block into httpProxies in /opt/monorail/config.json, and restart on-http service.

{
"localPath": "/ubuntu",
"server": "http://us.archive.ubuntu.com/",
"remotePath": "/ubuntu/"

}

Call API to Install OS

After the mirror is setup, We could download payload and call workflow API to install OS. For Ubuntu OS installation,
the payload format is different as below.

Local ISO Mirror

Public and Local Sync Mirror

Get Ubuntu Trusty(14.04) payload example for local ISO mirror.

wget https://raw.githubusercontent.com/RackHD/RackHD/master/example/samples/install_
→˓ubuntu_payload_iso_minimal.json

Call OS installation workflow API to install OS. 127.0.0.1:9090 is according to the configuration address and
port of httpEndPoints -> northbound-api-router in /opt/monorail/config.json

curl -X POST -H 'Content-Type: application/json' -d @install_ubuntu_payload_iso_
→˓minimal.json 127.0.0.1:9090/api/current/nodes/{node-id}/workflows?name=Graph.
→˓InstallUbuntu | jq '.'

For public and local sync mirror, they use the same payload format.

Get Ubuntu Trusty(14.04) payload example.

wget https://raw.githubusercontent.com/RackHD/RackHD/master/example/samples/install_
→˓ubuntu_payload_minimal.json

Call OS installation workflow API to install OS. 127.0.0.1:9090 is according to the configuration address and
port of httpEndPoints -> northbound-api-router in /opt/monorail/config.json

174 Chapter 1. Contents



RackHD Documentation, Release 2.0

curl -X POST -H 'Content-Type: application/json' -d @install_ubuntu_payload_minimal.
→˓json 127.0.0.1:9090/api/current/nodes/{node-id}/workflows?name=Graph.InstallUbuntu
→˓| jq '.context.graphId'

Please record the API’s returned result, it’s this workflow’s Id (like 342cce19-7385-43a0-b2ad-16afde072715),
it will be used to check result later.

Note: {{ file.server }} in payload will be replaced with fileServerAddress and fileServerPort
in /opt/monorail/config.json by RackHD automatically while running. It also could be customized by
{your-ip}:{your-port} for your own file service.

For more details about payload file please refer to Non-Windows OS Installation Workflow Payload

Check Result

You could use following API to check if installation is succeded. 342cce19-7385-43a0-b2ad-16afde072715
is the returned workflow Id returned from install OS API above, please replace it with yours.

curl -X GET 127.0.0.1:9090/api/current/nodes/{node-id}/workflows | jq '.[] | select(.
→˓context.graphId == "342cce19-7385-43a0-b2ad-16afde072715") | ._status'

If the result is running please wait until it’s succeeded.

You also could login the host console to see if installation succeed or not. By default, the root user will be created,
and its password could be seen from rootPassword field from Non-Windows OS Installation Workflow Payload

Debian Installation

Important: DNS server is required in Debian installation, make sure you have put following lines in
/etc/dhcp/dhcpd.conf. 172.31.128.1 is a default option in RackHD

option domain-name-servers 172.31.128.1;
option routers 172.31.128.254;

A mirror should be setup firstly before installation. For Debian, there are two ways to setup mirror currently.

• Local ISO mirror: Download Debian ISO image, mount ISO image in a local server as the repository, http
service for this repository is provided so that a node could access without proxy.

• Public mirror: The node could access a public or remote site’s mirror repository with proxy.

Local ISO Mirror

Public Mirror

mkdir ~/iso && cd !/iso

# Download iso file
wget https://cdimage.debian.org/debian-cd/current/amd64/iso-cd/debian-9.4.0-amd64-
→˓xfce-CD-1.iso

# Create mirror folder

(continues on next page)

1.8. Server Workflow Guide 175



RackHD Documentation, Release 2.0

(continued from previous page)

mkdir -p /var/mirrors/debian

# Replace {on-http-dir} with your own
mkdir -p {on-http-dir}/static/http/mirrors

# Mount iso
sudo mount debian-9.4.0-amd64-xfce-CD-1.iso /var/mirrors/debian

# Replace {on-http-dir} with your own
sudo ln -s /var/mirrors/debian {on-http-dir}/static/http/mirrors/

Add following block into httpProxies in /opt/monorail/config.json, and restart on-http service.

{
"localPath": "/debian",
"server": "http://ftp.us.debian.org/",
"remotePath": "/debian/"

}

Call API to Install OS

Get payload example:

wget https://raw.githubusercontent.com/RackHD/RackHD/master/example/samples/install_
→˓debian_payload_minimal.json

Remember to replace version and repo with your own, see fileServerAddress and fileServerPort in
/opt/monorail/config.json

Create workflow, replace the 9090 port if you are using other ports You can configure the port in /opt/monorail/
config.json -> httpEndPoints -> northbound-api-router

curl -X POST -H 'Content-Type: application/json' -d @install_debian_payload_minimal.
→˓json 127.0.0.1:9090/api/current/nodes/{node-id}/workflows?name=Graph.InstallDebain
→˓| jq '.'

Note: For more detail about payload file please refer to Non-Windows OS Installation Workflow Payload

ESXi Installation

A mirror should be setup firstly before installation. For ESXi, there is only one way to setup mirror currently.

• Local ISO mirror: Download ESXi ISO image, mount ISO image in a local server as the repository, http
service for this repository is provided so that a node could access without proxy.

Local ISO Mirror

mkdir ~/iso && cd !/iso

# Download iso file from https://my.vmware.com/web/vmware/info/slug/datacenter_cloud_
→˓infrastructure/vmware_vsphere_hypervisor_esxi/6_0

(continues on next page)

176 Chapter 1. Contents



RackHD Documentation, Release 2.0

(continued from previous page)

# Create mirror folder
mkdir -p /var/mirrors/esxi

# Replace {on-http-dir} with your own
mkdir -p {on-http-dir}/static/http/mirrors

# Mount iso
sudo mount VMware-VMvisor-Installer-201507001-2809209.x86_64.iso /var/mirrors/esxi

# Replace {on-http-dir} with your own
sudo ln -s /var/mirrors/esxi {on-http-dir}/static/http/mirrors/

Call API to Install OS

Get payload example:

wget https://raw.githubusercontent.com/RackHD/RackHD/master/example/samples/install_
→˓esx_payload_minimal.json

Remember to replace version and repo with your own, see fileServerAddress and fileServerPort in
/opt/monorail/config.json

Create workflow, replace the 9090 port if you are using other ports You can configure the port in /opt/monorail/
config.json -> httpEndPoints -> northbound-api-router

curl -X POST -H 'Content-Type: application/json' -d @install_esxi_payload_minimal.
→˓json 127.0.0.1:9090/api/current/nodes/{node-id}/workflows?name=Graph.InstallESXi |
→˓jq '.'

Note: For more detail about payload file please refer to Non-Windows OS Installation Workflow Payload

RHEL Installation

A mirror should be setup firstly before installation. For RHEL, there is only one way to setup mirror currently.

• Local ISO mirror: Download RHEL ISO image, mount ISO image in a local server as the repository, http
service for this repository is provided so that a node could access without proxy.

Local ISO Mirror

mkdir ~/iso && cd !/iso

# Download iso file from `<redhat.com>`_
# Here we use rhel-server-7.0-x86_64-dvd.iso for example

# Create mirror folder
mkdir -p /var/mirrors/rhel

# Replace {on-http-dir} with your own
mkdir -p {on-http-dir}/static/http/mirrors

# Mount iso

(continues on next page)

1.8. Server Workflow Guide 177



RackHD Documentation, Release 2.0

(continued from previous page)

sudo mount rhel-server-7.0-x86_64-dvd.iso /var/mirrors/rhel

# Replace {on-http-dir} with your own
sudo ln -s /var/mirrors/ubuntu {on-http-dir}/static/http/mirrors/

Call API to Install OS

Get payload example:

wget https://raw.githubusercontent.com/RackHD/RackHD/master/example/samples/install_
→˓rhel_payload_minimal.json

Remember to replace version and repo with your own, see fileServerAddress and fileServerPort in
/opt/monorail/config.json

Create workflow, replace the 9090 port if you are using other ports You can configure the port in /opt/monorail/
config.json -> httpEndPoints -> northbound-api-router

curl -X POST -H 'Content-Type: application/json' -d @install_rhel_payload_minimal.
→˓json 127.0.0.1:9090/api/current/nodes/{node-id}/workflows?name=Graph.InstallRHEL |
→˓jq '.'

Note: For more detail about payload file please refer to Non-Windows OS Installation Workflow Payload

CentOS Installation

Setup Mirror

A mirror should be setup firstly before installation.

• Local ISO mirror: Download CentOS ISO image, mount ISO image in a local server as the repository, http
service for this repository is provided so that a node could access without proxy.

• Local sync mirror: Sync public site’s mirror repository to local, http service for this repository is provided so
that a node could access without proxy.

• Public mirror: The node could access a public or remote site’s mirror repository with proxy.

Local ISO Mirror

Local Sync Mirror

Public Mirror

mkdir ~/iso && cd !/iso

# Download iso file
# You can choose a mirror in this site:
# http://isoredirect.centos.org/centos/7/isos/x86_64/CentOS-7-x86_64-DVD-1708.iso
# There are three type of ISOs (DVD ISO, Everything ISO, Minimal ISO), Minimal ISO is
→˓not supported

wget http://mirror.math.princeton.edu/pub/centos/7/isos/x86_64/CentOS-7-x86_64-DVD-
→˓1708.iso

(continues on next page)

178 Chapter 1. Contents



RackHD Documentation, Release 2.0

(continued from previous page)

# Create mirror folder
mkdir -p /var/mirrors/centos

# Replace {on-http-dir} with your own
mkdir -p {on-http-dir}/static/http/mirrors

# Mount iso
sudo mount CentOS-7-x86_64-DVD-1708.iso /var/mirrors/centos

# Replace {on-http-dir} with your own
sudo ln -s /var/mirrors/centos {on-http-dir}/static/http/mirrors/

For CentOS local mirror, the mirrors are easily made by syncing public CentOS mirror site, on any recent distribution
of CentOS:

# Replace x with your own version

sudo rsync --progress -av --delete --delete-excluded --exclude "local*" \
--exclude "i386" rsync://centos.eecs.wsu.edu/x/ /var/mirrors/centos/x

Add following block into httpProxies in /opt/monorail/config.json, and restart on-http service.

{
"localPath": "/centos",
"server": "http://mirror.centos.org/",
"remotePath": "/centos/"

},

Call API to Install OS

Get payload example:

wget https://raw.githubusercontent.com/RackHD/RackHD/master/example/samples/install_
→˓centos_7_payload_minimal.json

Remember to replace version and repo with your own, see fileServerAddress and fileServerPort in
/opt/monorail/config.json

Create workflow, replace the 9090 port if you are using other ports You can configure the port in /opt/monorail/
config.json -> httpEndPoints -> northbound-api-router

curl -X POST -H 'Content-Type: application/json' \
-d @install_centos_payload_minimal.json \
127.0.0.1:9090/api/current/nodes/{node-id}/workflows?name=Graph.InstallCentos |

→˓jq '.'

Note: For more detail about payload file please refer to Non-Windows OS Installation Workflow Payload

OpenSuse Installation

A mirror should be setup firstly before installation.

1.8. Server Workflow Guide 179



RackHD Documentation, Release 2.0

• Local ISO mirror: Download SUSE ISO image, mount ISO image in a local server as the repository, http
service for this repository is provided so that a node could access without proxy.

• Local sync mirror: Sync public site’s mirror repository to local, http service for this repository is provided so
that a node could access without proxy.

• Public mirror: The node could access a public or remote site’s mirror repository with proxy.

Local ISO Mirror

Local Sync Mirror

Public Mirror

mkdir ~/iso && cd !/iso

# Download iso file
http://mirror.clarkson.edu/opensuse/distribution/openSUSE-current/iso/openSUSE-Leap-
→˓42.3-DVD-x86_64.iso

# Create mirror folder
mkdir -p /var/mirrors/suse

# Replace {on-http-dir} with your own
mkdir -p {on-http-dir}/static/http/mirrors

# Mount iso
sudo mount openSUSE-Leap-42.3-DVD-x86_64.iso /var/mirrors/suse

# Replace {on-http-dir} with your own
sudo ln -s /var/mirrors/suse {on-http-dir}/static/http/mirrors/

For SUSE local mirror, The mirrors are easily made by syncing public SUSE mirror site, on any recent distribution of
SUSE:

# Replace xx.x with your own version

sudo rsync --progress -av --delete --delete-excluded --exclude "local*" --exclude
→˓"i386" --exclude "i586" --exclude "i686" rsync://mirror.clarkson.edu/opensuse/
→˓distribution/leap/xx.x/repo/oss/ /var/mirrors/suse/distribution/xx.x

sudo rsync --progress -av --delete --delete-excluded --exclude "local*" --exclude
→˓"i386" --exclude "i586" --exclude "i686" rsync://mirror.clarkson.edu/opensuse/
→˓update/leap/xx.x /var/mirrors/suse/update/leap/xx.x

sudo rsync --progress -av --delete --delete-excluded --exclude "local*" --exclude
→˓"i386" --exclude "i586" --exclude "i686" rsync://mirror.clarkson.edu/opensuse/
→˓update/leap/xx.x /var/mirrors/suse/update/leap/xx.x

Add following block into httpProxies in /opt/monorail/config.json, and restart on-http service.

{
"localPath": "/suse",
"server": "http://mirror.clarkson.edu/",
"remotePath": "/opensuse/distribution/leap/42.3/repo/"

}

180 Chapter 1. Contents



RackHD Documentation, Release 2.0

Call API to Install OS

Create workflow, replace the 9090 port if you are using other ports You can configure the port in /opt/monorail/
config.json -> httpEndPoints -> northbound-api-router

wget https://raw.githubusercontent.com/RackHD/RackHD/master/example/samples/install_
→˓suse_payload_minimal.json

Remember to replace version and repo with your own, see fileServerAddress and fileServerPort in
/opt/monorail/config.json

Create workflow, replace the 9090 port if you are using other ports You can configure the port in /opt/monorail/
config.json -> httpEndPoints -> northbound-api-router

curl -X POST -H 'Content-Type: application/json' -d @install_suse_minimal.json 127.0.
→˓0.1:9090/api/current/nodes/{node-id}/workflows?name=Graph.InstallSUSE | jq '.'

Note: For more detail about payload file please refer to Non-Windows OS Installation Workflow Payload

CoreOS Installation

A mirror should be setup firstly before installation. For CoreOS, there is only one way to setup mirror currently.

• Local ISO mirror: Download CoreOS ISO image, mount ISO image in a local server as the repository, http
service for this repository is provided so that a node could access without proxy.

Local ISO Mirror

mkdir ~/iso && cd !/iso

# Download iso file
wget https://stable.release.core-os.net/amd64-usr/current/coreos_production_iso_image.
→˓iso

# Create mirror folder
mkdir -p /var/mirrors/coreos

# Replace {on-http-dir} with your own
mkdir -p {on-http-dir}/static/http/mirrors

# Mount iso
sudo mount coreos_production_iso_image.iso /var/mirrors/coreos

# Replace {on-http-dir} with your own
sudo ln -s /var/mirrors/coreos {on-http-dir}/static/http/mirrors/

Call API to Install OS

Get payload example:

wget https://raw.githubusercontent.com/RackHD/RackHD/master/example/samples/install_
→˓coreos_payload_minimum.json

1.8. Server Workflow Guide 181



RackHD Documentation, Release 2.0

Remember to replace version and repo with your own, see fileServerAddress and fileServerPort in
/opt/monorail/config.json

Create workflow, replace the 9090 port if you are using other ports You can configure the port in /opt/monorail/
config.json -> httpEndPoints -> northbound-api-router

curl -X POST -H 'Content-Type: application/json' -d @install_coreos_payload_minimal.
→˓json 127.0.0.1:9090/api/current/nodes/{node-id}/workflows?name=Graph.InstallCoreOS
→˓| jq '.'

Note: For more detail about payload file please refer to Non-Windows OS Installation Workflow Payload

Photon Installation

A mirror should be setup firstly before installation. For PhotonOS, there is only one way to setup mirror currently.

• Local ISO mirror: Download PhotonOS ISO image, mount ISO image in a local server as the repository, http
service for this repository is provided so that a node could access without proxy.

Local ISO Mirror

mkdir ~/iso && cd !/iso

# Download iso file
wget https://bintray.com/vmware/photon/download_file?file_path=photon-1.0-62c543d.iso

# Create mirror folder
mkdir -p /var/mirrors/photon

# Replace {on-http-dir} with your own
mkdir -p {on-http-dir}/static/http/mirrors

# Mount iso
sudo mount photon-1.0-62c543d.iso /var/mirrors/photon

# Replace {on-http-dir} with your own
sudo ln -s /var/mirrors/photon {on-http-dir}/static/http/mirrors/

Call API to Install OS

Get payload example:

wget https://raw.githubusercontent.com/RackHD/RackHD/master/example/samples/install_
→˓photon_os_payload_minimal.json

Remember to replace version and repo with your own, see fileServerAddress and fileServerPort in
/opt/monorail/config.json

Create workflow, replace the 9090 port if you are using other ports You can configure the port in /opt/monorail/
config.json -> httpEndPoints -> northbound-api-router

curl -X POST -H 'Content-Type: application/json' -d @install_photon_os_payload_
→˓minimal.json 127.0.0.1:9090/api/current/nodes/{node-id}/workflows?name=Graph.
→˓InstallPhotonOS | jq '.'

182 Chapter 1. Contents



RackHD Documentation, Release 2.0

Note: For more detail about payload file please refer to Non-Windows OS Installation Workflow Payload

Windows Installation

Setting up a Windows OS repo

• Mounting the OS Image:

Windows’ installation requires that Windows OS’ ISO image must be mounted to a directory accessable to the node.
In the example below a windows server 2012 ISO image is being mounted to a directory name Licensedwin2012

sudo mount -o loop /var/renasar/on-http/static/http/W2K2012_2015-06-08_1040.iso /var/
→˓renasar/on-http/static/http/Licensedwin2012

• Export the directory

Edit the samba config file in order to export the shared directory

sudo nano /etc/samba/smb.conf

[windowsServer2012]
comment = not windows server 201
path = /var/renasar/on-http/static/http/Licensedwin2012
browseable = yes
guest ok = yes
writable = no
printable = no

• Restart the samba share

sudo service samba restart

Get payload example:

wget https://raw.githubusercontent.com/RackHD/RackHD/master/example/samples/install_
→˓windows_payload_minimal.json

Call API to install OS:

curl -X POST -H 'Content-Type: application/json' -d install_windows_payload_minimal.
→˓json 127.0.0.1:9090/api/current/nodes/{node-id}/workflows?name=Graph.
→˓InstallWindowsServer | jq '.'

Note: For more detail about payload file please refer to Windows OS Installation Workflow Payload

Details about payload

Non-Windows OS Installation Workflow Payload

All parameters descriptions of OS installation workflow payload are listed below, they are fit for use with all supported
OSes except for CoreOS (see note below).

1.8. Server Workflow Guide 183



RackHD Documentation, Release 2.0

NOTE: The CoreOS installer is pretty basic, and only supports certain parameters shown below. Configurations not
directly supported by RackHD may still be made via a custom Ignition template. Typical parameters for CoreOS
include: version, repo, and installScriptUri*|*ignitionScriptUri and optionally vaultToken and grubLinuxAppend.

184 Chapter 1. Contents



RackHD Documentation, Release 2.0

Pa-
ram-
e-
ters

Type Flags Description

ver-
sion

String re-
quired

The version number of target OS that needs to install. NOTE: For Ubuntu, version should be
the codename, not numbers, for example, it should be “trusty”, not “14.04”

repo String re-
quired

The OS repository address, currently only supports HTTP. Some examples of free OS
distributions for reference. For CentOS, http://mirror.centos.org/centos/7/os/x86_64/. For
Ubuntu, http://us.archive.ubuntu.com/ubuntu/. For openSUSE, http://download.opensuse.
org/distribution/leap/42.1/repo/oss/. For ESXi, RHEL, SLES and PhotonOS, the repository
is the directory of mounted DVD ISO image, and http service is provided for this directory.

os-
Name

String re-
quired

(Debian/Ubuntu only) The OS name, the default value is debian for ubuntu installation use
ubuntu.

root-
Pass-
word

String op-
tional

The password for the OS root account, it could be clear text, RackHD will do encryption
before store it into OS installer’s config file. default rootPassword is “RackHDRocks!”. Some
OS distributions’ password requirements must be satisfied. For ESXi 5.5, ESXi 5 Password
Requirements. For ESXi 6.0, ESXi 6 Password Requirements.

host-
name

String op-
tional

The hostname for target OS, default hostname is “localhost”

do-
main

String op-
tional

The domain for target OS

time-
zone

String op-
tional

(Debian/Ubuntu only) The Timezone based on $TZ. Please refer to https://en.wikipedia.org/
wiki/List_of_tz_database_time_zones

ntp String op-
tional

(Debian/Ubuntu only) The NTP server address.

users Ar-
ray

op-
tional

If specified, this contains an array of objects, each object contains the user account information
that will be created after OS installation. 0, 1, or multiple users could be specified. If users is
omitted, null or empty, no user will be created. See users for more details.

dnsServersAr-
ray

op-
tional

If specified, this contains an array of string, each element is the Domain Name Server, the first
one will be primary, others are alternative.

ntpServersAr-
ray

op-
tional

If specified, this contains an array of string, each element is the Network Time Protocol Server.

net-
workDe-
vices

Ar-
ray

op-
tional

The static IP setting for network devices after OS installation. If it is omitted, null or empty,
RackHD will not touch any network devices setting, so all network devices remain at the
default state (usually default is DHCP).If there is multiple setting for same device, RackHD
will choose the last one as the final setting, both ipv4 and ipv6 are supported here. (ESXi
only, RackHD will choose the first one in networkDevices as the boot network interface.) See
networkDevices for more details.

rootSshKeyString op-
tional

The public SSH key that will be appended to target OS.

in-
stallD-
isk

String/Numberop-
tional

installDisk is to specify the target disk which the OS will be installed on.
It can be a string or a number. For string, it is a disk path that the
OS can recongize, its format varies with OS. For example, “/dev/sda” or
“/dev/disk/by-id/scsi-36001636121940cc01df404d80c1e761e” for CentOS/RHEL,
“t10.ATA_____SATADOM2DSV_3SE__________________________20130522AA0990120088”
or “naa.6001636101840bb01df404d80c2d76fe” or “mpx.vmhba1:C0:T1:L0” or
“vml.0000000000766d686261313a313a30” for ESXi. For number, it is a RackHD
generated disk identifier (it could be obtained from “driveId” catalog). If installDisk is
omitted, RackHD will assign the default disk by order: SATADOM -> first disk in “driveId”
catalog -> “sda” for Linux OS. NOTE: Users need to make sure the installDisk (either
specified by user or by default) is the first bootable drive from BIOS and raid controller setup.
PhotonOS only supports ‘/dev/sd*’ format currently.

in-
stall-
Par-
ti-
tions

Ar-
ray

op-
tional

installPartitions is to specify the installDisk’s partitions when OS installer’s default auto par-
titioning is not wanted. (Only support CentOS at present, Other Linux OS will be supported).
See installPartitions for more details.

kvm Booleanop-
tional

The value is true or false to indicates to install kvm or not, default is false. (ESXi, PhotonOS
doesn’t support this parameter)

switchDe-
vices

Ar-
ray

op-
tional

(ESXi only) If specified, this contains an array of objects with switchName, uplinks (optional),
and failoverPolicy (optional) parameters. If uplinks is omitted, null or empty, the vswitch will
be created with no uplinks. If failoverPolicy is omitted, null or empty, the default ESXi policy
will be used. See switchDevices for more details.

postIn-
stall-
Com-
mands

Ar-
ray

op-
tional

(ESXi only) If specified, this contains an array of string commands that will be run at the
end of the post installation step. This can be used by the customer to tweak final system
configuration.

in-
stall-
Type

String op-
tional

(PhotonOS only) The value is minimal or full to indicate the type of installed OS, defualt
installType is minimal

in-
stallScrip-
tUri

String op-
tional

The download URI for a custom kickstart/preseed/autoyast/cloud-config template to be used
for automatic installation/configuration.

ig-
ni-
tion-
Scrip-
tUri

String op-
tional

(CoreOS only) The download URI for a custom Ignition template used for post-install system
configurations for CoreOS Container Linux

vault-
To-
ken

String op-
tional

(CoreOS only) The token used for unwrapping a wrapped Vault response – currently only
an Ignition template (ignitionScriptUri) or cloud-config userdata (installScriptUri) payload is
supported.

grubLin-
uxAp-
pend

String op-
tional

(CoreOS only) Extra (persistent) kernel boot parameters
NOTE: There are RackHD specific commands within all default install templates that should
be copied into any custom install templates. The built-in templates support the above options,
and any additional install logic is best added by copying the default templates and modifying
from there. The default install scripts can be found in https://github.com/RackHD/on-http/tree/
master/data/templates, and the filename is specified by the installScript field in the various OS
installer task definitions (e.g. https://github.com/RackHD/on-tasks/blob/master/lib/task-data/
tasks/install-centos.js)

re-
moteL-
og-
ging

Booleanop-
tional

If set to true, OS installation logs will be sent to RackHD server from nodes if installer supports
remote logging. Note you must configure rsyslog on RackHD server if you want to receive
those logs. Please refer to https://github.com/RackHD/RackHD/blob/master/example/config/
rsyslog_rackhd.cfg.example as how to enable rsyslog service on RackHD server. Currently
only CentOS installation supports this feature, we are still working on other OS installation
workflows to enable this feature.

bonds Ar-
ray

op-
tional

(RHEL/CentOS only) Bonded interface configuration. Bonded interfaces will be created after
OS installation. If it is omitted, null or empty, RackHD will not create any bond interface.

pack-
ages

Ar-
ray

op-
tional

(RHEL/CentOS only) List of packages, package groups, package environments that needs to
be installed along with base RPMs. If it is omitted, null or empty, RackHD will just install
packages in base package group.

en-
able-
Ser-
vices

Ar-
ray

op-
tional

(RHEL/CentOS only) List of services that needs to be enabled explicitly after OS installation
is completed.

dis-
able-
Ser-
vices

Ar-
ray

op-
tional

(RHEL/CentOS only) List of services that needs to be disabled explicitly after OS installation
is completed. If it is omitted, null or empty, RackHD will not not disable any installed service.

1.8. Server Workflow Guide 185

http://mirror.centos.org/centos/7/os/x86_64/
http://us.archive.ubuntu.com/ubuntu/
http://download.opensuse.org/distribution/leap/42.1/repo/oss/
http://download.opensuse.org/distribution/leap/42.1/repo/oss/
https://pubs.vmware.com/vsphere-50/index.jsp?topic=%2Fcom.vmware.vsphere.security.doc_50%2FGUID-DC96FFDB-F5F2-43EC-8C73-05ACDAE6BE43.html&resultof=%22password%22%20
https://pubs.vmware.com/vsphere-50/index.jsp?topic=%2Fcom.vmware.vsphere.security.doc_50%2FGUID-DC96FFDB-F5F2-43EC-8C73-05ACDAE6BE43.html&resultof=%22password%22%20
http://pubs.vmware.com/vsphere-60/index.jsp#com.vmware.vsphere.security.doc/GUID-4BDBF79A-6C16-43B0-B0B1-637BF5516112.html?resultof=%2522%2550%2561%2573%2573%2577%256f%2572%2564%2522%2520%2522%2570%2561%2573%2573%2577%256f%2572%2564%2522%2520%2522%2552%2565%2571%2575%2569%2572%2565%256d%2565%256e%2574%2573%2522%2520%2522%2572%2565%2571%2575%2569%2572%2522%2520
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://github.com/RackHD/on-http/tree/master/data/templates
https://github.com/RackHD/on-http/tree/master/data/templates
https://github.com/RackHD/on-tasks/blob/master/lib/task-data/tasks/install-centos.js
https://github.com/RackHD/on-tasks/blob/master/lib/task-data/tasks/install-centos.js
https://github.com/RackHD/RackHD/blob/master/example/config/rsyslog_rackhd.cfg.example
https://github.com/RackHD/RackHD/blob/master/example/config/rsyslog_rackhd.cfg.example


RackHD Documentation, Release 2.0

For users in payload:

Pa-
ram-
e-
ters

Type Flags Description

name String re-
quired

The name of user. it should start with a letter or digit or underline and the length of it should
larger than 1(>=1).

pass-
word

String re-
quired

The password of user, it could be clear text, RackHD will do encryption before store it into OS
installer’s config file. The length of password should larger than 4(>=5). Some OS distribu-
tions’ password requirements must be satisfied. For ESXi 5.5, ESXi 5 Password Requirements.
For ESXi 6.0, ESXi 6 Password Requirements.

uid Num-
ber

op-
tional

The unique identifier of user. It should be between 500 and 65535.(Not support for ESXi OS)

sshKeyString op-
tional

The public SSH key that will be appended into target OS.

For networkDevices in payload, both ipv4 and ipv6 are supported

Parame-
ters

Type Flags Description

device String re-
quired

Network device name (ESXi only, or MAC address) in target OS (ex. “eth0”,
“enp0s1” for Linux, “vmnic0” or “2c:60:0c:ad:d5:ba” for ESXi)

ipv4 Ob-
ject

op-
tional

See ipv4 or ipv6 more details.

ipv6 Ob-
ject

op-
tional

See ipv4 or ipv6 more details.

es-
xSwitch-
Name

String op-
tional

(ESXi only) The vswitch to attach the vmk device to. vSwitch0 is used by default if
no esxSwitchName is specified.

For installPartitions in payload:

Param-
eters

Type Flags Description

mount-
Point

String re-
quired

Mount point, it could be “/boot”, “/”, “swap”, etc. just like the mount point input when
manually installing OS.

size String re-
quired

Partition size, it could be a number string or “auto”, For number, default unit is MB.
For “auto”, all available free disk space will be used.

fsType String op-
tional

File system supported by OS, it could be “ext3”, “xfs”, “swap”, etc. If mountPoint is
“swap”, the fsType must be “swap”.

• Debian/Ubuntu installation requires boot, root and swap partitions, make sure your auto sized partition must
be the last partition.

For ipv4 or ipv6 configurations:

186 Chapter 1. Contents

https://pubs.vmware.com/vsphere-50/index.jsp?topic=%2Fcom.vmware.vsphere.security.doc_50%2FGUID-DC96FFDB-F5F2-43EC-8C73-05ACDAE6BE43.html&resultof=%22password%22%20
http://pubs.vmware.com/vsphere-60/index.jsp#com.vmware.vsphere.security.doc/GUID-4BDBF79A-6C16-43B0-B0B1-637BF5516112.html?resultof=%2522%2550%2561%2573%2573%2577%256f%2572%2564%2522%2520%2522%2570%2561%2573%2573%2577%256f%2572%2564%2522%2520%2522%2552%2565%2571%2575%2569%2572%2565%256d%2565%256e%2574%2573%2522%2520%2522%2572%2565%2571%2575%2569%2572%2522%2520


RackHD Documentation, Release 2.0

Param-
eters

Type Flags Description

ipAddr String re-
quired

The assigned static IP address

gateway String re-
quired

The gateway.

netmask String re-
quired

The subnet mask.

vlanIds Ar-
ray

op-
tional

The VLAN ID. This is an array of integers (0-4095). In the case of Windows OS, the
vlan is an array of one parameter only

mtu Num-
ber

op-
tional

Size of the largest network layer protocol data unit

For switchDevices (ESXi only) in payload:

Pa-
ram-
e-
ters

Type Flags Description

switch-
Name

String re-
quired

The name of the vswitch

up-
links

String op-
tional

The array of vmnic# devices or MAC address to set as the uplinks.(Ex: uplinks: [“vmnic0”,
“2c:60:0c:ad:d5:ba”]). If an uplink is attached to a vSwitch, it will be removed from the old
vSwitch before being added to the vSwitch named by ‘switchName’.

failover-
Pol-
icy

String op-
tional

This can be one of the following options: explicit: Always use the highest order uplink from
the list of active adapters which pass failover criteria. iphash: Route based on hashing the
src and destination IP addresses mac: Route based on the MAC address of the packet source.
portid: Route based on the originating virtual port ID.

For bonds (RHEL/CentOS only) in payload:

Parameters Type Flags Description
name String re-

quired
The name of the bond. Example ‘bond0’

nics Ar-
ray

optional The array of server NICs that needs to be included in the bond.

bondvlaninter-
faces

Ar-
ray

optional List of tagged sub-interfaces to be created associated with the bond in-
terface

For bondvlaninterfaces in payload, both ipv4 and ipv6 are supported

Parameters Type Flags Description
vlanid Number required VLAN ID to be associated with the tagged sub interface
ipv4 Object optional See ipv4 or ipv6 more details.
ipv6 Object optional See ipv4 or ipv6 more details.

1.8. Server Workflow Guide 187



RackHD Documentation, Release 2.0

Windows OS Installation Workflow Payload

Parameters Type Flags Description
productkey String required Windows License
domain String optional Windows domain
hostname String optional Windows hostname to be giving to the node after installation
smbUser String required Smb user for the share to which Windows’ iso is mounted
smbPassword String required Smb password
repo String required The share to to which Windows’ iso is mounted

Example of minimum payload https://github.com/RackHD/RackHD/blob/master/example/samples/install_
windows_payload_minimal.json

Example of full payload https://github.com/RackHD/RackHD/blob/master/example/samples/install_windows_
payload_full.json

Supported OS Installation Workflows

Supported OSes and their workflows are listed in table, and the listed versions have been verified by RackHD, but not
limited to these, this table will be updated when more versions are verified.

OS Workflow Version
ESXi Graph.InstallESXi 5.5/6.0
RHEL Graph.InstallRHEL 7.0/7.1/7.2
CentOS Graph.InstallCentOS 6.5/7
Ubuntu Graph.InstallUbuntu trusty(14.04)/xenial(16.04)/artful(17.10)
Debian Graph.InstallDebian wheezy(7)/jessie(8)/stretch(9)
SUSE Graph.InstallSUSE openSUSE: leap/42.1, SLES: 11/12
CoreOS Graph.InstallCoreOS 899.17.0
Windows Graph.InstallWindowsServer Server 2012
PhotonOS Graph.InstallPhotonOS 1.0

1.8.3 RAID Configuration

Table of Contents

• RAID Configuration

– Create docker image with Storcli/Perccli

– Create RAID

– Delete RAID

RackHD supports RAID configuration to create and delete RAID for hardwares with LSI RAID controller.

Create docker image with Storcli/Perccli

RackHD leverages LSI provided tool Storcli to configure RAID. RackHD requires user to build docker image including
Storcli. As on how to build docker image for RakcHD, please refer to https://github.com/RackHD/on-imagebuilder.

188 Chapter 1. Contents

https://github.com/RackHD/RackHD/blob/master/example/samples/install_windows_payload_minimal.json
https://github.com/RackHD/RackHD/blob/master/example/samples/install_windows_payload_minimal.json
https://github.com/RackHD/RackHD/blob/master/example/samples/install_windows_payload_full.json
https://github.com/RackHD/RackHD/blob/master/example/samples/install_windows_payload_full.json
https://github.com/RackHD/on-imagebuilder


RackHD Documentation, Release 2.0

Perccli is a Dell tool which is based on Storcli and has the same commands with it. If user wants to configure RAID on
Dell servers, Perccli instead of Storcli should be built in docker image. The newly built docker image(default named
“dell.raid.docker.tar.xz” for Dell and “raid.docker.tar.xz” for others) should be put in RackHD static file path.

Create RAID

An example of creating RAID workflow is as below:

curl -X POST \
-H 'Content-Type: application/json' \
-d @params.json \
<server>/api/current/nodes/<identifier>/workflows?name=Graph.Raid.Create.MegaRAID

→˓'

An example of params.json with minimal parameters for creating RAID workflow:

{
"options": {

"bootstrap-rancher":{
"dockerFile": "raid.docker.tar.xz"

},
"create-raid": {

"raidList": [
{

"enclosure": 255,
"type": "raid1",
"drives": [1, 4],
"name": "VD0"

},
{

"enclosure": 255,
"type": "raid5",
"drives": [2, 5, 3],
"name": "VD1"

}
]

}
}

}

For details on items of create-raid.options, please refer to: https://github.com/RackHD/on-tasks/blob/master/lib/
task-data/schemas/create-megaraid.json.

Note:

• User need make sure drives are under UGOOD status before creating RAID. If drives are under other status
(JBOD, online/offline or UBAD), RackHD won’t be able to create RAID with them.

• For Dell servers, tool path in docker container should be specified in param.json as below:

{
"options": {

"bootstrap-rancher":{
"dockerFile": "dell.raid.docker.tar.xz"

},
"create-raid": {

"path": "/opt/MegaRAID/perccli/percli64",
"raidList": [

(continues on next page)

1.8. Server Workflow Guide 189

https://github.com/RackHD/on-tasks/blob/master/lib/task-data/schemas/create-megaraid.json
https://github.com/RackHD/on-tasks/blob/master/lib/task-data/schemas/create-megaraid.json


RackHD Documentation, Release 2.0

(continued from previous page)

{
"enclosure": 255,
"type": "raid1",
"drives": [1, 4],
"name": "VD0"

},
{

"enclosure": 255,
"type": "raid5",
"drives": [2, 5, 3],
"name": "VD1"

}
]

}
}

}

Delete RAID

An example of deleting RAID workflow is as below:

curl -X POST \
-H 'Content-Type: application/json' \
-d @params.json \
<server>/api/current/nodes/<identifier>/workflows?name=Graph.Raid.Delete.MegaRAID

→˓'

An example of params.json for deleting RAID workflow:

{
"options": {

"delete-raid": {
"raidIds": [0, 1]

},
"bootstrap-rancher": {

"dockerFile": "raid.docker.tar.xz"
}

}
}

“raidIds” is the virtual disk id to be deleted.

For Dell servers, the payload should look like:

{
"options": {

"delete-raid": {
"path": "/opt/MegaRAID/perccli/percli64",
"raidIds": [0, 1]

},
"bootstrap-rancher": {

"dockerFile": "dell.raid.docker.tar.xz"
}

}
}

190 Chapter 1. Contents



RackHD Documentation, Release 2.0

1.8.4 Disk Secure Erase

Table of Contents

• Disk Secure Erase

– Disk Secure Erase Workflow API

– Disk Secure Erase Workflow Payload

– Supported Disk Secure Erase Tools

– Supported Disk Secure Erase Arguments

– Disk Secure Erase Workflow Notes

Secure Erase (SE) also known as a wipe is to destroy data on a disk so that data can’t or is difficult to be retrieved.
RackHD implements solution to do disk Secure Erase.

Disk Secure Erase Workflow API

An example of starting secure erase for disks:

curl -X POST \
-H 'Content-Type: application/json' \
-d @params.json \
<server>/api/current/nodes/<identifier>/workflows?name=Graph.Drive.SecureErase

An example of params.json for disk secure erase:

{
"options": {

"drive-secure-erase":{
"eraseSettings": [

{
"disks":["sdb"],
"tool":"sg_format",
"arg": "0"

},
{

"disks":["sda"],
"tool":"scrub",
"arg": "nnsa"

}
]

},
"disk-scan-delay": {

"duration": 10000
}

}
}

Use below command to check the workflow is active or inactive:

curl <server>/api/current/nodes/<identifier>/workflows?active=true

Deprecated 1.1 API - Use below command to check the workflow is active or inactive:

1.8. Server Workflow Guide 191



RackHD Documentation, Release 2.0

curl <server>/api/1.1/nodes/<identifier>/workflows/active

Use below command to stop the active workflow to cancel secure erase workflow:

curl -X PUT \
-H 'Content-Type: application/json' \
-d '{"command": "cancel"}' \
<server>/api/current/nodes/<id>/workflows/action

Deprecated 1.1 API - Use below command to stop the active workflow to cancel secure erase workflow:

curl -X DELETE <server>/api/1.1/nodes/<identifier>/workflows/active

Disk Secure Erase Workflow Payload

Parameters descriptions of secure erase workflow payload are listed below. Among them, duration is for drive-scan-
delay task, other parameters are for drive-secure-erase task.

Pa-
ram-
e-
ters

Type Flags Description

eras-
eSet-
tings

Ar-
ray

re-
quired

Contains secure erase option list, each list element is made up of “disks” and optional “tool”
and “arg” parameters.

disks Ar-
ray

re-
quired

Contains disks to be erased, both devName or identifier from driveId catalog are eligible.

tool String op-
tional

Specify tool to be used for secure erase. Default it would be scrub.

arg String op-
tional

Specify secure erase arguments with specified tools.

du-
ra-
tion

In-
te-
ger

op-
tional

Specify delay time in milliseconds. After node boots into microkernel, it takes some time for
OS to scan all disks. duration is designed so that secure erase is initiated after all disks are
scanned. duration is 10 seconds if not specified.

Supported Disk Secure Erase Tools

RackHD currently supports disk secure erase with four tools: scrub, hdparm, sg_sanitize, sg_format. If “tool” is not
specified in payload, “scrub” is used as default. Below table includes description for different tools.

192 Chapter 1. Contents



RackHD Documentation, Release 2.0

Tool Description
scrub Scrub iteratively writes patterns on files or disk devices to make retrieving the data more difficult. Scrub

supports almost all drives including SATA, SAS, USB and so on.
hd-
parm

Hdparm can be used to issue ATA instruction of Secure Erase or enhanced secure erase to a disk. Hdparm
works well with SATA drives, but it can brick a USB drive if it doesn’t support SAT (SCSI-ATA Command
Translation).

sg_sanitizeSg_sanitize (from sg3-utils package) removes all user data from disk with SCSI SANITIZE command.
Sanitize is more likely to be implemented on modern disks (including SSDs) than FORMAT UNIT’s security
initialization feature and in some cases much faster. However since it is relative new and optional, not all
SCSI drives support SANITIZE command

sg_formatSg_format (from sg3-utils package) formats, resizes or modifies protection information of a SCSI disk. The
primary goal of a format is the configuration of the disk at the end of a format (e.g. different logical block
size or protection information added). Removal of user data is only a side effect of a format.

Supported Disk Secure Erase Arguments

Default argument for scrub is “nnsa”, below table shows supported arguments for scrub tool:

Sup-
ported
args

Description

nnsa 4-pass NNSA Policy Letter NAP-14.1-C (XVI-8) for sanitizing removable and non-removable hard disks,
which requires overwriting all locations with a pseudorandom pattern twice and then with a known pattern:
random(x2), 0x00, verify. scrub default arg=nnsa

dod 4-pass DoD 5220.22-M section 8-306 procedure (d) for sanitizing removable and non-removable rigid
disks which requires overwriting all addressable locations with a character, its complement, a random
character, then verify. NOTE: scrub performs the random pass first to make verification easier:random,
0x00, 0xff, verify.

bsi 9-pass method recommended by the German Center of Security in Information Technologies (http://www.
bsi.bund.de): 0xff, 0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f.

fil-
lzero

1-pass pattern: 0x00.

fillff 1-pass pattern: 0xff.
ran-
dom

1-pass pattern: random(x1).

ran-
dom2

2-pass pattern: random(x2).

cus-
tom=0xdd

1-pass custom pattern.

gut-
mann

The canonical 35-pass sequence described in Gutmann’s paper cited below.

schneier 7-pass method described by Bruce Schneier in “Applied Cryptography” (1996): 0x00, 0xff, random(x5)
pfitzner7Roy Pfitzner’s 7-random-pass method: random(x7).
pfitzner33Roy Pfitzner’s 33-random-pass method: random(x33).
old 6-pass pre-version 1.7 scrub method: 0x00, 0xff, 0xaa, 0x00, 0x55, verify.
fas-
told

5-pass pattern: 0x00, 0xff, 0xaa, 0x55, verify.

us-
army

US Army AR380-19 method: 0x00, 0xff, random. The same with dod option

Default argument for hdparm is “security-erase”, below table shows supported arguments for hdparm tool:

1.8. Server Workflow Guide 193

http://www.bsi.bund.de
http://www.bsi.bund.de


RackHD Documentation, Release 2.0

Supported
args

Description

security-erase Issue ATA Secure Erase (SE) command. hdparm default arg=”security-erase”
security-erase-
enhanced

Enhanced SE is more aggressive in that it ought to wipe every sector: normal, HPA, DCO, and
G-list. Not all drives support this command

Default argument for sg_sanitize is “block”, below table shows supported arguments for sg_sanitize tool:

Supported args Description
block Perform a “block erase” sanitize operation. sg_sanitize default arg=”block”
fail Perform an “exit failure mode” sanitize operation.
crypto Perform a “cryptographic erase” sanitize operation.

Default argument for sg_format is “1”, below table shows supported arguments for sg_format tool:

Supported args Description
“1” Disable Glist erasing. sg_format default arg=”1
“0” Enable Glist erasing

Disk Secure Erase Workflow Notes

Please pay attention to below items if you are using RackHD secure erase function:

• RackHD Secure Erase is not fully tested. RackHD secure erase is tested on RackHD supported servers with
only one LSI RAID controller. Servers with multiple RAID controllers, disk array enclosures or non-LSI RAID
controllers are not tested.

• Use RackHD to manage RAID operation. RackHD relies on its catalog data for secure erase. If RAID
operation is not done via RackHD, RackHD secure erase workflow might not be able to recognize drive names
given and fail. A suggestion is to re-run discovery for the compute node if you did changed RAID configure not
using RackHD.

• Secure Erase is time-consuming. Hdparm, sg_format and sg_sanitize will leverage drive firmware to do secure
erase, even so it might take hours for a 1T drive. Scrub is overwriting data to disks and its speed is depends on
argument you chose. For a “gutmann” argument, it will take days to erase a 1T drive.

• Cancel Secure Erase workflow can’t cancel secure erase operation. Hdparm, sg_sanitize and sg_format are
leverage drive firmware to do secure erase, once started there is no proper way to ask drive firmware to stop it
till now.

• Power cycle is risky. Except for scrub tool, other tools are actually issue a command to drive and drive itself will
control secure erase. That means once you started secure erase workflow, you can’t stop it until it is completed.
If you power cycled compute node under this case, drive might be frozen, locked or in worst case bricked. All
data will not be accessible. If this happens, you need extra effort to bring your disks back to normal status.

1.8.5 Firmware Update

Table of Contents

• Firmware Update

– Firmware update Example using SKU Pack

194 Chapter 1. Contents



RackHD Documentation, Release 2.0

Firmware update Example using SKU Pack

This example provides instructions on how to flash a BMC image on a Quanta (node) using SKU Pack.

1. Wait for discovery to complete and get nodes to check if node has been discovered successfully

Get Nodes

GET /api/current/nodes

curl <server>/api/current/nodes

2. Post the obm settings if they don’t already exist for the node. An example on how to do this is shown in
Section 7.1.8.1 here http://rackhd.readthedocs.io/en/latest/tutorials/vagrant.html#adding-a-sku-definition Sec-
tion 7.1.8.1

3. Acquire BMC files and utilities from the vendor. Go to the Quanta directory, a sub-directory of the root folder
of on-skupack, extract the BMC image and BMC upgrade executable into the static/bmc of the skupack and
update the config.json with the md5sum of the firmware image.

4. The firmware files and update utilities need to be built into a SKU package

Build SKU Package

$ ./build-package.bash <sku_pack_directory> <subname>
<sku_pack_directory> must be one of the directory names containing the
→˓node type on the root directory of on-skupack, e.g., it can be quanta-
→˓d51-1u, quanta-t41,dell-r630, etc, and <subname> can be any name a user
→˓likes. A {sku_pack_directory_subname}.tar.gz will be created in
→˓tarballs folder of the same directory.

$ ls ./tarballs
sku_pack_directory_subname.tar.gz

5. The SKU package that was built needs to be registered

POST the tarball

curl -X POST --data-binary @tarballs/sku_pack_directory_subname.tar.gz
→˓localhost:8080/api/current/skus/pack

The above command will return a SKU ID. If an error like “Duplicate name found” is returned in place of the
SKU ID, check the database and delete the preexisting SKU package.

6. The pollers associated with the node need to be paused before POST’ing the Workflow to flash a new BMC
image. This is needed to avoid seeing any poller errors in the log while BMC is offline. Further information on
IPMI poller properties can be found at Pollers

Get List of Active Pollers Associated With a Node

GET /api/current/nodes/:id/pollers

curl <server>/api/current/nodes/<nodeid>/pollers

Update a Single Poller to pause the poller

PATCH /api/current/pollers/:id
{

(continues on next page)

1.8. Server Workflow Guide 195

http://rackhd.readthedocs.io/en/latest/tutorials/vagrant.html#adding-a-sku-definition
http://rackhd.readthedocs.io/en/latest/rackhd/pollers.html?highlight=ipmi%20pollers


RackHD Documentation, Release 2.0

(continued from previous page)

"paused": true
}

curl -X PATCH \
-H 'Content-Type: application/json' \
-d '{"paused":true}' \
<server>/api/current/pollers/<pollerid>

7. The workflow to flash a new BMC image to a Quanta node needs to be POST’ed If a user would upgrade a node
without reboot at the end or run BMC upgrade with a file override, a user need add a payload when posting the
workflow. Details please refer to the README.md under Quanta directory.

POST Workflow

POST /api/current/nodes/:id/workflows?name=Graph.Flash.Quanta.Bmc

curl -X POST <server>/api/current/nodes/<nodeid>/workflows?
→˓name=Graph.Flash.Quanta.Bmc

8. Check if any active workflows on that node exist to make sure the workflow has completed

GET active Workflow

GET /api/current/nodes/<id>/workflows/active

curl <server>/api/current/nodes/<id>/workflows/active

If a remote viewing session exists for the node, check the BMC firmware to verify the version has been updated.

1.9 Switch Workflow Guide

1.9.1 Discovery

Switch Active Discovery and Configruation

Table of Contents

• Switch Active Discovery and Configruation

– Active Discovery

– Extending the Active Discovery Workflow

Utilizing network switch installation environments like POAP (Cisco), ZTP (Arista) and ONIE (Cumulus, etc.),
RackHD offers the capability to discover, inventory, and configure network switches during bootup.

Active Discovery

The terms “active discovery” and “passive discovery” are used by RackHD to differentiate between a discovery work-
flow that occurs as part of a switch bootup process, and may potentially make persistent changes to the switch operating

196 Chapter 1. Contents



RackHD Documentation, Release 2.0

system (active discovery), versus discovery workflow that queries out of band endpoints against an already-configured
switch without making any persistent changes to it (e.g. SNMP polling).

During active discovery, by default the RackHD system will do light cataloging as part of the discovery process, gen-
erating enough data to identify the SKU/model of a switch in order to dynamically generate workflows and templates
specific to it.

For example, active discovery of a Cisco switch booting with POAP (Power On Auto-Provisioning) will create a
catalog document with source “version” that SKU definitions can be built against:

{
"node" : ObjectId("5708438c3bfc361c5cca74dc"),
"source" : "version",
"data" : {

"kern_uptm_secs" : "2",
"kick_file_name" : "bootflash:///n3000-uk9-kickstart.6.0.2.U5.2.bin",
"rr_service" : null,
"loader_ver_str" : "N/A",
"module_id" : "48x10GT + 6x40G Supervisor",
"kick_tmstmp" : "03/17/2015 10:50:07",
"isan_file_name" : "bootflash:///n3000-uk9.6.0.2.U5.2.bin",
"sys_ver_str" : "6.0(2)U5(2)",
"bootflash_size" : "2007040",
"kickstart_ver_str" : "6.0(2)U5(2)",
"kick_cmpl_time" : "3/17/2015 2:00:00",
"chassis_id" : "Nexus 3172T Chassis",
"proc_board_id" : "FOC1928169X",
"memory" : "3793756",
"kern_uptm_mins" : "6",
"bios_ver_str" : "2.0.0",
"cpu_name" : "Intel(R) Pentium(R) CPU @ 2.00GHz",
"bios_cmpl_time" : "04/01/2014",
"kern_uptm_hrs" : "0",
"rr_usecs" : "981748",
"isan_tmstmp" : "03/17/2015 12:29:49",
"rr_sys_ver" : "6.0(2)U5(2)",
"rr_reason" : "Reset Requested by CLI command reload",
"rr_ctime" : "Fri Apr 8 23:35:28 2016",
"header_str" : "Cisco Nexus Operating System (NX-OS) Software",
"isan_cmpl_time" : "3/17/2015 2:00:00",
"host_name" : "switch",
"mem_type" : "kB",
"kern_uptm_days" : "0",
"power_seq_ver_str" : "Module 1: version v1.1"

},
"createdAt" : ISODate("2016-04-08T23:49:36.985Z"),
"updatedAt" : ISODate("2016-04-08T23:49:36.985Z"),
"_id" : ObjectId("57084390a2eb38385c3998b7")

}

Extending the Active Discovery Workflow

RackHD utilizes the ability of most switch installation environments to run python scripts. This makes it easy to
extend the active discovery process to produce custom catalogs, and deploy switch configurations and boot images.

It will be helpful to understand the RackHD concepts of a SKU and a Workflow before reading ahead.

SKU documentation: SKUs

1.9. Switch Workflow Guide 197



RackHD Documentation, Release 2.0

Workflow documentation: Workflows

In order to extend the discovery process, a SKU definition must be created and added to the system (see SKUs ). An
example SKU definition that matches the above Cisco catalog might look like this:

{
"name": "Cisco Nexus 3000 Switch - 54 port",
"rules": [

{
"path": "version.chassis_id",
"regex": "Nexus\\s\\d\\d\\d\\d\\w?\\sChassis"

},
{

"path": "version.module_id",
"equals": "48x10GT + 6x40G Supervisor"

}
],
"discoveryGraphName": "Graph.Switch.CiscoNexus3000.MyCustomWorkflow",
"discoveryGraphOptions": {}

}

Using the discoveryGraphName field of the SKU definition, custom workflows can be triggered during switch
installation. Creation of these workflows is detailed below.

For the examples below, let’s start with an empty workflow definition for our custom switch workflow:

{
"friendlyName": "My Custom Cisco Switch Workflow",
"injectableName": "Graph.Switch.CiscoNexus3000.MyCustomWorkflow",
"options": {},
"tasks": []

}

Extending Cataloging

To collect custom catalog data from the switch, a Python script must be created for each catalog entry that can return
either JSON or XML formatted data, and that is able to run on the target switch (all imported modules must exist, and
the syntax must be compatible with the switch OS’ version of Python).

Custom Python scripts must execute their logic within a single main function, that returns the catalog data, for
example the following script catalogs SNMP group information on a Cisco Nexus switch:

1. Define a cataloging script

def main():
import json
# Python module names vary depending on nxos version
try:

from cli import clid
except:

from cisco import clid
data = {}

try:
data['group'] = json.loads(clid('show snmp group'))

except:
pass

return data

198 Chapter 1. Contents



RackHD Documentation, Release 2.0

In this example, the cli module exists in the Nexus OS in order to run Cisco CLI commands.

2. Upload the script as a template

Next, the script must be uploaded as a template to the RackHD server:

# PUT https://<server>:<port>/api/current/templates/library/cisco-catalog-snmp-
→˓example.py
# via curl:
curl -X PUT -H "Content-type: text/raw" -d @<script path> https://<server>:<port>/api/
→˓current/templates/library/cisco-catalog-snmp-example.py

3. Add script to a workflow

Scripts are sent to the switch to be run via the Linux Commands task, utilizing the downloadUrl option. More
information on this task can be found in the documentation for the Creating a Linux Commands Graph

After adding the cataloging script as a template, add a task definition to the custom workflow, so now it becomes:

{
"friendlyName": "My Custom Cisco Switch Workflow",
"injectableName": "Graph.Switch.CiscoNexus3000.MyCustomWorkflow",
"options": {},
"tasks": [

{
"label": "catalog-switch-config",
"taskDefinition": {

"friendlyName": "Catalog Cisco Snmp Group",
"injectableName": "Task.Inline.Catalog.Switch.Cisco.SnmpGroup",
"implementsTask": "Task.Base.Linux.Commands",
"options": {

"commands": [
{

"downloadUrl": "{{ api.templates }}/cisco-catalog-snmp-
→˓example.py?nodeId={{ task.nodeId }}",

"catalog": { "format": "json", "source": "snmp-group" }
}

]
},
"properties": {}

},
}

]
}

Deploying a startup config

In order to deploy a startup config to a switch, another Python script needs to be created that will download and copy
the startup config, and a template must be created for the startup config file itself.

The below Python script deploys a startup config to a Cisco Nexus switch during POAP:

def main():
# Python module names vary depending on nxos version
try:

from cli import cli
except:

from cisco import cli

tmp_config_path = "volatile:poap.cfg"

(continues on next page)

1.9. Switch Workflow Guide 199



RackHD Documentation, Release 2.0

(continued from previous page)

cli("copy <%=startupConfigUri%> %s vrf management" % tmp_config_path)
cli("copy %s running-config" % tmp_config_path)
cli("copy running-config startup-config")
# copying to scheduled-config is necessary for POAP to exit on the next
# reboot and apply the configuration
cli("copy %s scheduled-config" % tmp_config_path)

The deploy script and startup config file should be uploaded via the templates API:

# Upload the deploy script
# PUT https://<server>:<port>/api/current/templates/library/deploy-cisco-startup-
→˓config.py
# via curl:
curl -X PUT -H "Content-type: text/raw" -d @<deploy script path> https://<server>:
→˓<port>/api/current/templates/library/deploy-cisco-startup-config.py

# Upload the startup config
# PUT https://<server>:<port>/api/current/templates/library/cisco-example-startup-
→˓config
# via curl:
curl -X PUT -H "Content-type: text/raw" -d @<startup config path> https://<server>:
→˓<port>/api/current/templates/library/cisco-example-startup-config

Note the ejs template variable used in the above python script (<%=startupConfigUri%>). This is used by the
RackHD server to render its own API address dynamically, and must be specified within the workflow options.

Now the custom workflow can be updated again with a task to deploy the startup config:

{
"friendlyName": "My Custom Cisco Switch Workflow",
"injectableName": "Graph.Switch.CiscoNexus3000.MyCustomWorkflow",
"options": {},
"tasks": [

{
"label": "deploy-startup-config",
"taskDefinition": {

"friendlyName": "Deploy Cisco Startup Config",
"injectableName": "Task.Inline.Switch.Cisco.DeployStartupConfig",
"implementsTask": "Task.Base.Linux.Commands",
"options": {

"startupConfig": "cisco-example-startup-config",
"startupConfigUri": "{{ api.templates }}/{{ options.startupConfig

→˓}}?nodeId={{ task.nodeId }}",
"commands": [

{
"downloadUrl": "{{ api.templates }}/deploy-cisco-startup-

→˓config.py?nodeId={{ task.nodeId }}
}

]
},
"properties": {}

},
},
{

"label": "catalog-switch-config",
"taskDefinition": {

(continues on next page)

200 Chapter 1. Contents



RackHD Documentation, Release 2.0

(continued from previous page)

"friendlyName": "Catalog Cisco Snmp Group",
"injectableName": "Task.Inline.Catalog.Switch.Cisco.SnmpGroup",
"implementsTask": "Task.Base.Linux.Commands",
"options": {

"commands": [
{

"downloadUrl": "{{ api.templates }}/cisco-catalog-snmp-
→˓example.py?nodeId={{ task.nodeId }}",

"catalog": { "format": "json", "source": "snmp-group" }
}

]
},
"properties": {}

},
}

]
}

Note that the startupConfigUri template variable is set in the options for the task definition, so that the deploy
script can download the startup config from the right location.

In order to make this workflow more re-usable for a variety of switches, the startupConfig option can be specified as
an override in the SKU definition using the discoveryGraphOptions field, for example:

{
"name": "Cisco Nexus 3000 Switch - 24 port",
"rules": [

{
"path": "version.chassis_id",
"regex": "Nexus\\s\\d\\d\\d\\d\\w?\\sChassis"

},
{

"path": "version.module_id",
"equals": "24x10GT.*"

}
],
"discoveryGraphName": "Graph.Switch.CiscoNexus3000.MyCustomWorkflow",
"discoveryGraphOptions": {

"deploy-startup-config": {
"startupConfig": "example-cisco-startup-config-24-port"

}
}

}

Switch Passive Discovery

Table of Contents

• Switch Passive Discovery

– Automatic Discovery

– Discover an existing device node

1.9. Switch Workflow Guide 201



RackHD Documentation, Release 2.0

Switch type nodes can be discovered either by running a discovery graph against them or creating via http calls with
the autoDiscover field set to true.

Automatic Discovery

A new node created by posting to /api/current/node will be automatially discovered if:

• the type is ‘switch’

• it has an ibms field with the host to query and snmp community string

• the autoDiscover field is set to true

Create a Node to be Auto-Discovered

POST /api/current/nodes
{

"name": "nodeName"
"type": "switch",
"autoDiscover": true
"ibms": [{"service": "snmp-ibm-service", "config": {"host": "10.1.1.3", "community

→˓": "public"}}]
}

curl -X POST \
-H 'Content-Type: application/json' \
-d '{"name":"nodeName", "type": "switch", "autoDiscover":true, \
"ibms": [{"service": "snmp-ibm-service", "config": {"host": "10.1.1.3", "community

→˓": "public"}}] \
<server>/api/current/nodes

{
"type":"switch",
"name":"nodeName",
"autoDiscover":true,
"service": "snmp-ibm-service",
"config": {

"host": "10.1.1.3"
},
"createdAt":"2015-07-27T22:03:45.353Z",
"updatedAt":"2015-07-27T22:03:45.353Z",
"id":"55b6aac1024fd1b349afc145"

}

Discover an existing device node

If you want to discover a switch node manually either create the node without an autoDiscover option or set autoDis-
cover to false you can then run discovery against the node by posting to /api/current/nodes/:identifier/workflows and
specifying the node id in the graph options, eg:

POST /api/current/nodes/55b6afba024fd1b349afc148/workflows
{

"name": "Graph.Switch.Discovery",
"options": {

"defaults": {

(continues on next page)

202 Chapter 1. Contents



RackHD Documentation, Release 2.0

(continued from previous page)

"nodeId": "55b6afba024fd1b349afc148"
}

}
}

curl -X POST \
-H 'Content-Type: application/json' \
-d '{"name": "Graph.Switch.Discovery", \
"options":{"defaults":{"nodeId": "55b6afba024fd1b349afc148"}}}' \

<server>/api/current/nodes/55b6afba024fd1b349afc148/workflows

You can also use this mechanism to discovery a compute server or PDU, simply using different settings. For example,
a smart PDU:

curl -X POST \
-H 'Content-Type: application/json' \
-d '{"name":"nodeName", "type": "pdu", \
"ibms": [{"service": "snmp-ibm-service", "config": {"host": "10.1.1.3", "community

→˓": "public"}}] \
<server>/api/current/nodes

curl -X POST \
-H 'Content-Type: application/json' \
-d '{"name": "Graph.PDU.Discovery", \
"options":{"defaults":{"nodeId": "55b6afba024fd1b349afc148"}}}' \

<server>/api/1.1/nodes/55b6afba024fd1b349afc148/workflows

And a management server (or other server you do not want to or cannot to reboot to interrogate)

curl -X POST \
-H 'Content-Type: application/json' \
-d '{"name":"nodeName", "type": "compute", \
"obms": [ { "service": "ipmi-obm-service", "config": { "host": "10.1.1.3", \
"user": "admin", "password": "admin" } } ] }' \
<server>/api/current/nodes

curl -X POST \
-H 'Content-Type: application/json' \
-d '{"name": "Graph.MgmtSKU.Discovery",
"options":{"defaults":{"nodeId": "55b6afba024fd1b349afc148"}}}' \

<server>/api/current/nodes/55b6afba024fd1b349afc148/workflows

1.10 Extended Services

1.10.1 TFTP and DHCP Service Setup

Table of Contents

• TFTP and DHCP Service Setup

– TFTP and DHCP from the RackHD Server

1.10. Extended Services 203



RackHD Documentation, Release 2.0

* TFTP Service Configuration in the RackHD Server

* DHCP Service Configuration in the RackHD Server

– TFTP and DHCP from a Separate Server

* RackHD Main Services Configuration in the RackHD Server

* TFTP Service Configuration in the Separate Server

* DHCP Service Configuration in the Separate Server

RackHD is flexible to adapt to different network environments for TFTP and DHCP service. By default, RackHD use
on-tftp for TFTP service, ISC DHCP Server and DHCP proxy on-dhcp-proxy for DHCP service, and they are deployed
in RackHD server along with other RackHD service on-http, on-taskgraph, on-syslog. They could be replaced with
other TFTP and DHCP services, and also could be deployed to a separate server.

Cases Supported TFTP Service Supported DHCP Service
TFTP and DHCP services are pro-
vided from the RackHD server 1. on-tftp(default)

2. Third-party TFTP service
such as in.tftpd(tftp-hpa) in
Ubuntu OS

1. ISC DHCP + on-dhcp-
proxy(default)

2. ISC DHCP only
3. Third-party DHCP Service +

DHCP proxy
4. Third-party DHCP Service

only

TFTP and DHCP services are pro-
vided from a separate server 1. on-tftp

2. Third-party TFTP service
such as in.tftpd(tftp-hpa) in
Ubuntu OS

1. ISC DHCP + on-dhcp-proxy
2. ISC DHCP only
3. Third-party DHCP Service +

DHCP proxy
4. Third-party DHCP Service

only

NOTE: “Third-party” service means it’s not the RackHD default service.

TFTP and DHCP from the RackHD Server

TFTP Service Configuration in the RackHD Server

Default on-tftp Configuration

The RackHD default TFTP service is on-tftp, it could be configured by fields tftpBindAddress, tftpBindPort, tftpRoot
in config.json, and RackHD iPXE files are placed into the tftpRoot directory.

...
"tftpBindAddress": "172.31.128.1",
"tftpBindPort": 69,
"tftpRoot": "./static/tftp",
...

Third-Party TFTP Service Configuration

In many cases, another TFTP service can be used with RackHD. RackHD simply needs the files that on-tftp would
serve to be provided by another instance of TFTP. You can frequently do this by simply placing the RackHD iPXE

204 Chapter 1. Contents

https://github.com/RackHD/on-tftp
https://www.isc.org/downloads/dhcp
https://github.com/RackHD/on-dhcp-proxy
https://github.com/RackHD/on-tftp
https://github.com/RackHD/RackHD/blob/master/packer/ansible/roles/monorail/files/config.json
https://bintray.com/rackhd/binary/on-imagebuilder#files/ipxe
https://bintray.com/rackhd/binary/on-imagebuilder#files/ipxe


RackHD Documentation, Release 2.0

files into the TFTP service root directory.

For scripts in RackHD TFTP Templates, where the parameters such as apiServerAddress, apiServerPort are rendered
by on-tftp, they need to be hardcoded, They are 172.31.128.1 and 9080 in the example, then provide these scripts into
the TFTP root directory.

NOTE:

1. If all managed nodes’ NIC ROM are iPXE, not PXE, then you don’t need to provide RackHD iPXE files
into the TFTP directory.

2. If the functionality supported by rendered scripts is not needed, then you don’t need to provide RackHD
TFTP Templates scripts into the TFTP directory.

3. If both cases above are satisfied, the TFTP service is not needed by RackHD.

DHCP Service Configuration in the RackHD Server

The DHCP protocol is a critical component to the PXE boot process and for executing various profiles and Workflows
within RackHD.

By default RackHD deploys a DHCP configuration that forwards DHCP clients to the on-dhcp-proxy service, see
Software Architecture for more information. However conventional DHCP configurations that require static (and/or
dynamic) IP lease reservations are also supported, bypassing the on-dhcp-proxy service all together.

There are various DHCP Server versions out there, RackHD has been primarily validated against ISC DHCP Server.
As long as the DHCP server supports the required DHCP configuration options then those versions should be compat-
ible.

Default ISC DHCP + on-dhcp-proxy Configuration

The advantage of using the on-dhcp-proxy service is to avoid complication DHCP server setup, most of the logic
is handled in on-dhcp-proxy, it’s convenient and flexible. A typical simple dhcpd.conf of ISC DHCP Server for
forwarding DHCP request to RackHD’s on-dhcp-proxy service would work like the following:

ddns-update-style none;
option domain-name "example.org";
option domain-name-servers ns1.example.org, ns2.example.org;

default-lease-time 600;
max-lease-time 7200;
log-facility local7;

deny duplicates;

ignore-client-uids true;

subnet 172.31.128.0 netmask 255.255.240.0 {
range 172.31.128.2 172.31.143.254;
# Use this option to signal to the PXE client that we are doing proxy DHCP
# Even not doing proxy DHCP, it's essential, otherwise, monorail-undionly.kpxe
# would not DHCP successfully.
option vendor-class-identifier "PXEClient";

}

Substituting the subnet, range and netmask to match your desired networking configuration.

To enforce lease assignment based on MAC and not UID we opt-in to ignore the UID in the request by setting ignore-
client-uids true.

1.10. Extended Services 205

https://github.com/RackHD/on-tftp/tree/master/data/templates
https://bintray.com/rackhd/binary/on-imagebuilder#files/ipxe
https://github.com/RackHD/on-tftp/tree/master/data/templates
https://github.com/RackHD/on-tftp/tree/master/data/templates
https://www.isc.org/downloads/dhcp
http://linux.die.net/man/5/dhcpd.conf
https://www.isc.org/downloads/dhcp
https://en.wikipedia.org/wiki/Subnetwork
https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol#Overview
https://en.wikipedia.org/wiki/Subnetwork#Network_addressing_and_routing


RackHD Documentation, Release 2.0

ISC DHCP Only Configuration

ISC DHCP service can also define static host definitions, and not use on-dhcp-proxy. It would work like the following:

ddns-update-style none;

option domain-name "example.org";
option domain-name-servers ns1.example.org, ns2.example.org;

default-lease-time 600;
max-lease-time 7200;

log-facility local7;

deny duplicates;
ignore-client-uids true;

option arch-type code 93 = unsigned integer 16;

subnet 172.31.128.0 netmask 255.255.240.0 {
range 172.31.128.2 172.31.143.254;
next-server 172.31.128.1;

# It's essential for Ubuntu installation
option routers 172.31.128.1;
# It's essential for Ubuntu installation
option domain-name-servers 172.31.128.1;

# It's essential, otherwise, monorail-undionly.kpxe would not DHCP successfully.
option vendor-class-identifier "PXEClient";

# Register leased hosts with RackHD
if ((exists user-class) and (option user-class = "MonoRail")) {

filename "http://172.31.128.1:9080/api/current/profiles";
} else {
if option arch-type = 00:09 {

filename "monorail-efi64-snponly.efi";
} elsif option arch-type = 00:07 {

filename "monorail-efi64-snponly.efi";
} elsif option arch-type = 00:06 {

filename "monorail-efi32-snponly.efi";
} elsif substring(binary-to-ascii(16, 8, ":", substring(hardware, 1, 6)), 0, 8) =

→˓"0:2:c9" {
# If the mac belongs to a mellanox card, assume that it already has
# Flexboot and don't hand down an iPXE rom
filename "http://172.31.128.1:9080/api/current/profiles";

} elsif substring(binary-to-ascii(16, 8, ":", substring(hardware, 1, 6)), 0, 8) =
→˓"ec:a8:6b" {

filename "monorail.intel.ipxe";
} elsif substring(option vendor-class-identifier, 0, 6) = "Arista" {

# Arista skips the TFTP download step, so just hit the
# profiles API directly to get a profile from an active task
# if there is one
filename = concat("http://172.31.128.1:9080/api/current/profiles?macs=", binary-

→˓to-ascii(16, 8, ":", substring(hardware, 1, 6)));
} elsif substring(option vendor-class-identifier, 0, 25) =

→˓"PXEClient:Arch:00000:UNDI" {
filename "monorail-undionly.kpxe";

(continues on next page)

206 Chapter 1. Contents



RackHD Documentation, Release 2.0

(continued from previous page)

} else {
filename "monorail.ipxe";

}
}

# Example register static entry lookup with RackHD
host My_Host_SNXYZ {
hardware ethernet 00:0A:0B:0C:0D:0E;
fixed-address 172.31.128.120;
option routers 172.31.128.1;
if ((exists user-class) and (option user-class = "MonoRail")) {

filename "http://172.31.128.1:9080/api/common/profiles";
} else {

filename "monorail.ipxe";
}

}
}

In the global subnet definition we define a PXE chainloading setup to handle specific client requests.

if ((exists user-class) and (option user-class = "MonoRail")) {
...

} else {
...

}

If the request is made from a BIOS/UEFI PXE client, the DHCP server will hand out the iPXE bootloader image that
corresponds to the system’s architecture type.

if ((exists user-class) and (option user-class = "MonoRail")) {
filename "http://172.31.128.1:9080/api/current/profiles";

} else {
if option arch-type = 00:09 {

filename "monorail-efi64-snponly.efi";
} elsif option arch-type = 00:07 {

filename "monorail-efi64-snponly.efi";
} elsif option arch-type = 00:06 {

filename "monorail-efi32-snponly.efi";
} else {

filename "monorail.ipxe";
}

}

If the request is made from the RackHD iPXE client, the DHCP server will chainload another boot configuration
pointed at RackHD’s profiles API.

Third-Party DHCP Service Configuration

The third-party DHCP service could be used with possible solution configurations below:

1.10. Extended Services 207



RackHD Documentation, Release 2.0

Ser-
vice

Cases Solutions

Third-
party
DHCP
ser-
vice
only

DHCP service has
functionalities like
ISC DHCP, it could
configure DHCP to
return different boot-
file name according to
user-class, arch-type,
vendor-class-identifier
etc.

Configure it like ISC DHCP to make node auto chainloading iPXE files
and finally iPXE hit RackHD URL http://172.31.128.1:9080/api/
current/profiles IP address and port are configured according to
RackHD southbound configuration.

DHCP service could
not proxy DHCP, and
on-dhcp-proxy also
could not be deployed
in the DHCP server,
only bootfile name
could be specified by
DHCP

Replace “autoboot” command in Default iPXE Config with “dhcp” and
“http://172.31.128.1:9080/api/current/profiles”, then re-compile iPXE in on-
imagebuilder to generate new iPXE files, specify one of generated iPXE files
as bootfile name in DHCP configuration. IP address and port are configured ac-
cording to RackHD southbound configuration. Two drawbacks for this solution
due to DHCP and environment limitations: 1. IP address and port are hardcoded
in iPXE file 2. Only one iPXE bootfile name could be specified. it’s not flexible
to switch bootfile name automatically.

Third-
party
DHCP
ser-
vice
+
DHCP
proxy

DHCP service’s func-
tionality is less than
ISC DHCP, but it could
proxy DHCP like ISC
DHCP’s configuration
“option vendor-class-
identifier “PXEClient”

on-dhcp-proxy could be leveraged to avoid complicated DHCP configuration.

TFTP and DHCP from a Separate Server

The RackHD default TFTP and DHCP services such as on-tftp, on-dhcp-proxy and ISC DHCP could be deployed in
a separate server with some simple configurations.

RackHD also could work without its own TFTP and DHCP service, and leverage an existing TFTP and DHCP server
from the datacenter or lab environments.

When TFTP and DHCP are installed in a separate server, both the RackHD server and the TFTP/DHCP server need to
be set.

NOTE: TFTP and DHCP server IP address is 172.31.128.1, and RackHD server IP address is 172.31.128.2 in the
example below.

RackHD Main Services Configuration in the RackHD Server

In the RackHD server, /opt/monorail/config.json is updated with settings below, then restart on-http, on-
taskgraph and on-syslog services.

...
"apiServerAddress": "172.31.128.2",
...
"syslogBindAddress": "172.31.128.2"
...
"dhcpGateway": "172.31.128.1",

(continues on next page)

208 Chapter 1. Contents

https://github.com/RackHD/on-imagebuilder/blob/master/roles/ipxe/files/default.ipxe
http://172.31.128.1:9080/api/current/profiles
https://github.com/RackHD/on-imagebuilder
https://github.com/RackHD/on-imagebuilder


RackHD Documentation, Release 2.0

(continued from previous page)

"dhcpProxyBindAddress": "172.31.128.1",
...
"tftpBindAddress": "172.31.128.1",
...
"httpEndpoints": [

...
{

...
"address": "172.31.128.2",
...

},
...

]
...

TFTP Service Configuration in the Separate Server

Default on-tftp Configuration

/opt/monorail/config.json need to be updated with settings below, then restart on-tftp.

...
"apiServerAddress": "172.31.128.2",
...
"syslogBindAddress": "172.31.128.2"
...
"dhcpGateway": "172.31.128.1",
"dhcpProxyBindAddress": "172.31.128.1",
...
"tftpBindAddress": "172.31.128.1",
...
"httpEndpoints": [

...
{

...
"address": "172.31.128.2",
...

},
...

]
...

Third-Party TFTP Service Configuration

The third-party TFTP service setup in the separate server is the same with in RackHD server. RackHD TFTP Templates
scripts’ rendered parameters apiServerAddress, apiServerPort is 172.31.128.2, 9080 in the example.

DHCP Service Configuration in the Separate Server

Default ISC DHCP + on-dhcp-proxy Configuration

ISC DHCP dhcpd.conf need to be updated with settings below, then restart ISC DHCP. NOTE: DHCP ip addresses
range starts from 172.31.128.3, because 172.31.128.2 is assigned to RackHD server.

1.10. Extended Services 209

https://github.com/RackHD/on-tftp/tree/master/data/templates


RackHD Documentation, Release 2.0

ddns-update-style none;
option domain-name "example.org";
option domain-name-servers ns1.example.org, ns2.example.org;

default-lease-time 600;
max-lease-time 7200;
log-facility local7;

deny duplicates;

ignore-client-uids true;

subnet 172.31.128.0 netmask 255.255.240.0 {
range 172.31.128.3 172.31.143.254;
# Use this option to signal to the PXE client that we are doing proxy DHCP
# Even not doing proxy DHCP, it's essential, otherwise, monorail-undionly.kpxe
# would not DHCP successfully.
option vendor-class-identifier "PXEClient";

}

/opt/monorail/config.json need to be updated with settings below, then restart on-dhcp-proxy.

...
"apiServerAddress": "172.31.128.2",
...
"syslogBindAddress": "172.31.128.2"
...
"dhcpGateway": "172.31.128.1",
"dhcpProxyBindAddress": "172.31.128.1",
...
"tftpBindAddress": "172.31.128.1",
...
"httpEndpoints": [

...
{

...
"address": "172.31.128.2",
...

},
...

]
...

ISC DHCP Only Configuration

ISC DHCP dhcpd.conf need to be updated with settings below, then restart ISC DHCP. NOTE: DHCP ip addresses
range starts from 172.31.128.3, because 172.31.128.2 is assigned to RackHD server.

ddns-update-style none;

option domain-name "example.org";
option domain-name-servers ns1.example.org, ns2.example.org;

default-lease-time 600;
max-lease-time 7200;

log-facility local7;

(continues on next page)

210 Chapter 1. Contents



RackHD Documentation, Release 2.0

(continued from previous page)

deny duplicates;
ignore-client-uids true;

option arch-type code 93 = unsigned integer 16;

subnet 172.31.128.0 netmask 255.255.240.0 {
range 172.31.128.3 172.31.143.254;
next-server 172.31.128.1;

# It's essential for Ubuntu installation
option routers 172.31.128.1;
# It's essential for Ubuntu installation
option domain-name-servers 172.31.128.1;

# It's essential, otherwise, monorail-undionly.kpxe would not DHCP successfully.
option vendor-class-identifier "PXEClient";

# Register leased hosts with RackHD
if ((exists user-class) and (option user-class = "MonoRail")) {

filename "http://172.31.128.2:9080/api/current/profiles";
} else {
if option arch-type = 00:09 {

filename "monorail-efi64-snponly.efi";
} elsif option arch-type = 00:07 {

filename "monorail-efi64-snponly.efi";
} elsif option arch-type = 00:06 {

filename "monorail-efi32-snponly.efi";
} elsif substring(binary-to-ascii(16, 8, ":", substring(hardware, 1, 6)), 0, 8) =

→˓"0:2:c9" {
# If the mac belongs to a mellanox card, assume that it already has
# Flexboot and don't hand down an iPXE rom
filename "http://172.31.128.2:9080/api/current/profiles";

} elsif substring(binary-to-ascii(16, 8, ":", substring(hardware, 1, 6)), 0, 8) =
→˓"ec:a8:6b" {

filename "monorail.intel.ipxe";
} elsif substring(option vendor-class-identifier, 0, 6) = "Arista" {

# Arista skips the TFTP download step, so just hit the
# profiles API directly to get a profile from an active task
# if there is one
filename = concat("http://172.31.128.2:9080/api/current/profiles?macs=", binary-

→˓to-ascii(16, 8, ":", substring(hardware, 1, 6)));
} elsif substring(option vendor-class-identifier, 0, 25) =

→˓"PXEClient:Arch:00000:UNDI" {
filename "monorail-undionly.kpxe";

} else {
filename "monorail.ipxe";

}
}

# Example register static entry lookup with RackHD
host My_Host_SNXYZ {
hardware ethernet 00:0A:0B:0C:0D:0E;
fixed-address 172.31.128.120;
option routers 172.31.128.1;
if ((exists user-class) and (option user-class = "MonoRail")) {

filename "http://172.31.128.2:9080/api/common/profiles";
} else {

(continues on next page)

1.10. Extended Services 211



RackHD Documentation, Release 2.0

(continued from previous page)

filename "monorail.ipxe";
}

}
}

Third-Party DHCP Service Configuration

The solutions of using the third-party DHCP service in a separate server are the same with in the RackHD server. Just
need to specify RackHD southbound IP address and port in DHCP configuration. they are 172.31.128.2, 9080 in the
example.

1.10.2 Static File Service Setup

Table of Contents

• Static File Service Setup

– Files That can be Moved into a Separate Server

– Diagrams for Different Working Modes

– Setup a Static File Server

– Notes

There are two kinds of static files in RackHD: one of them are used for RackHD functionality, and the other is node
discovery and os installation. This section introduces a mechanism to move the latter type to a separate third-party
service in order to offload the burden of file transmission in RackHD.

Files That can be Moved into a Separate Server

Some files, including schema, swagger configuration and others, interacts closely with RackHD, and are part of its
functionalities. Others are served for node discovery and OS installation (if users put OS image under the same static
file directory). on-http manages all the files mentioned above by default, and the latter (files for discovery and OS
installation) can be moved to a third-party static file server, which will be discussed below.

Diagrams for Different Working Modes

RackHD supports three modes to serve static files. This chapter introduces the settings for the last two modes.

• Legacy Mode: nodes get static files from on-http service (default).

• Single-Host Mode: nodes get static files from another service in the same host as RackHD.

• Multi-Host Mode: nodes get static files from different host.

212 Chapter 1. Contents

https://github.com/RackHD/on-http
https://github.com/RackHD/on-http


RackHD Documentation, Release 2.0

Setup a Static File Server

Prerequisites

The server can be accessed by nodes.

Configure a Third-Party Static File Server

Since RackHD doesn’t require any customization on a file server, users could adopt any frameworks they are familiar
with. Here takes nginx as an example about the configuration.

After install nginx, modify nginx_conf to make sure the following configuration works.

http {
server {

listen 3000;
sendfile on;

location / {
root /home/onrack/;

}
}

}

“3000” is the port for the server; “location” is the URI root path to access static files; and “root” specifies the directory
that will be used to search for files.

Restart nginx server after the new configuration.

Copy Static File into the Server

In the RackHD file directory on static file server (specified in “root” item above), create a directory named “common”.
Copy files from on-imagebuilder binary in bintray into this folder.

Configure the Path of Static File Server in RackHD

In config.json, add the following fields:

...
"fileServerAddress": "172.31.128.3",
"fileServerPort": 3000,

(continues on next page)

1.10. Extended Services 213

https://www.nginx.com/
https://www.nginx.com/resources/wiki/start/topics/tutorials/install/
https://www.nginx.com/resources/wiki/start/topics/examples/full/
https://bintray.com/rackhd/binary/on-imagebuilder#files/builds
https://github.com/RackHD/RackHD/blob/master/packer/ansible/roles/monorail/files/config.json


RackHD Documentation, Release 2.0

(continued from previous page)

"fileServerPath": "/",
...

The following table describes the configurations above.

Parameter Description
fileServerAddress IP address of static file server that nodes can access
fileServerPort port the server is listening to. Optional, the default value is 80
fileServerPath the “location” in server configuration. Optional, the default value is ‘/’

Restart RackHD services after adding these fields.

Notes

• fileServer configurations takes higher priority than httpStaticRoot, which means that when above fields exists,
RackHD will use file server address for static files and ignore that specified “httpSaticRoot”.

• When user creates a payload for a task, they could use {{ file.server }} as the address that nodes will use to get
static file. It will direct to the correct address holding static file, depending on different working modes.

• httpProxies still works. If user has setup a static file server, but would like to use http proxy for some OS
bootstrap workflow, they could modify “repo” option to still use {{ api.server }} for the address of RackHD
on-http service (take sample payload as an example):

...
"install-os": {

"version": "7.0",
"repo": "{{ api.server }}/Centos/7.0",
"rootPassword": "root"

}
...

1.10.3 UCS-Service

Table of Contents

• UCS-Service

– UCS-Service Setup

– UCS-Service API

– UCS-Service Workflows

* Discover Nodes

* Catalog Nodes

The UCS-Service is an optional RackHD service that will enable RackHD to communicate with Cisco UCS Manger.
This allows RackHD to discover and manage the hardware under the UCS Manager.

214 Chapter 1. Contents

http://rackhd.readthedocs.io/en/latest/rackhd/configuration.html?highlight=httpStaticRoot
http://rackhd.readthedocs.io/en/latest/rackhd/configuration.html?highlight=httpProxies
https://github.com/RackHD/RackHD/blob/master/example/samples/centos_iso_boot.json#L9


RackHD Documentation, Release 2.0

UCS-Service Setup

The UCS-Service configuration can be set in the config.json file. The following options are supported:

Option Description
address IP address the UCS-service will bind to
port TCP port the UCS-service will bind to
httpsEn-
abled

set to “true” to enable https access

certFile Certificate file for https (null for self signed)
keyFile Key file for https (null for self signed)
debug set to “true” to enable debugging
callbackUrl RackHD callback API. ucs-service asynchronous API will post data to RackHD via this callback
concur-
rency

Celery concurrent process number, default is 2

session After ucs-service login UCSM, it will keep login active for a duration of “session”, default it is 60
seconds

To start the UCS-Service run:

$ pip install -r requirements.txt
$ python app.py
$ python task.py worker

Or if you system has supervisord installed, you can use the script ucs-service-ctl.sh to start UCS-service:

sudo ./ucs-service-ctl.sh start

After you start UCS-service with ucs-service-ctl.sh, you can also stop or restart it with:

sudo ./ucs-service-ctl.sh stop/restart

There is a supervisord web GUI that can also be used to control ucs-service, by browsing https:
//<RackHD_Host>:9001

UCS-Service API

The API for the UCS-Service can be accessed via a graphical GUI by directing a browser to https:
//<RackHD_Host>:7080/ui UCS-service is originally built with synchronous http/https APIs, later on some asyn-
chronous APIs are also developed to improve performance accessing UCSM. UCS-service asynchronous API uses
Celery as task queue tool. If user accessed UCS-service asynchronous API, user won’t get required data immedi-
ately but a response body only includes string “Accepted”. Real data will be posted to callbackUrl retrieved from
config.json.

UCS-Service Workflows

Default workflows to discover and catalog UCS nodes have been created. There are separate workflows to discover
physical UCS nodes, discover logical UCS servers, and to catalog both physical and logical UCS nodes.

1.10. Extended Services 215

https:/
https:/
https:/
https:/


RackHD Documentation, Release 2.0

Discover Nodes

The Graph.Ucs.Discovery workflow will discover and catalog all physical and logical servers being managed by the
specified UCS Manager. It will create a node for each discovered service. It will also create a ucs-obm-service for each
node. This obm service can then be used to manage the node. The user must provide the address and login credentials
for the UCS manger and the URI for the ucs-service. Below is an example:

{
"name": "Graph.Ucs.Discovery",
"options":
{

"defaults":
{

"username": "admin",
"password": "secret",
"ucs": "172.31.128.252",
"uri": "https://localhost:7080"

},
"when-discover-physical-ucs":
{

"discoverPhysicalServers": "true"
},
"when-discover-logical-ucs":
{

"discoverLogicalServer": "true"
},
"when-catalog-ucs":
{

"autoCatalogUcs": "true"
}

}
}

Field Description
username The username used to log into the UCS Manager
password The password used to log into the UCS Manager
ucs The hostname or IP address of the UCS Manager
uri The URI used to access the running UCS-service
discoverPhysi-
calServers

If set to true, the workflow will create nodes for all physical servers discovered from the
UCS Manager

discoverLogi-
calServer

If set to true, the workflow will create nodes for all logical servers discovered from the
UCS Manger

autoCatalogUcs If set to true, catalog information will be collected for each discovered node

Catalog Nodes

Once the UCS nodes have been discovered, the Graph.Ucs.Catalog can be run with the NodeId. This graph will use
the ucs-obm-service created by the discovery workflow so no other options are required.

216 Chapter 1. Contents



RackHD Documentation, Release 2.0

1.10.4 SMI Service

Introduction

The System Management Integration (SMI) Microservices are add-on services that are used by RackHD workflows
and tasks, primarily focused on adding value for the managemenet of Dell servers. These services use a Zuul gateway
and Consul Registry service to present a unified API. Documentation for each service is avialiable on Github in
repositories that begin with “smi-service” or on the dockerhub page for the service.

How to start

1. Clone the RackHD repo if you don’t already have it, and change into the “rackhd/docker/dell” folder

git clone http://github.com/rackhd/rackhd
cd rackhd/docker/dell

2. Edit the .env file with your IP addresses.

• By default the IP addresses are set to 172.31.128.1 to match the default southbound IP for RackHD.

• Optionally, if you wish to have available the PDF generation feature of the swagger-aggregator, the “HOST_IP”
setting in the .env file should be changed to your “Northbound” IP.

3. Start Consul only in detached mode

sudo docker-compose up -d consul

You can view the consul UI by navigating to http://<your_HOST_IP_address>:8500

4. Post in microservice key/value properties into consul

./set_config.sh

You can view the key/value data in consul by clicking on the Key/Value tab.

5. Start remaining containers (or just the ones you want to start) in detached mode

Note: Not all the microservices need to run. You have the option of starting only the ones needed, or manually editing
the docker-compose.yml file. .. code:

sudo docker-compose up -d

It takes about 2 minutes for the services to come up. To start just the containers you want, specify the names of the
containers to start at the end of the command seperated by a space.

6. Verify your services are online .. code:

sudo docker-compose ps

You can also look for your services to register in the consul UI

7. Config smiConfig.json for RackHD .. code:

./set_rackhd_smi_config.sh

1.10. Extended Services 217

http:/


RackHD Documentation, Release 2.0

SMI Workflows

Workflow Name Description
Graph.Dell.Wsman.GetInventory Get inventory
Graph.Dell.Wsman.Configure.Idrac Configure IDRAC, including IP, netmask, gateway
Graph.Dell.Wsman.GetSystemComponentsCatalogGet server system configuration
Graph.Dell.Wsman.UpdateSystemComponentsUpdate server system configuration
Graph.Dell.Wsman.Add.Volume Add new RAID virtual disk
Graph.Dell.Wsman.Delete.Volume Delete RAID virtual disk
Graph.Dell.Wsman.Add.Hotspare Add new HotSpare for RAID virtual disk
Graph.Dell.Wsman.Discovery Discovery by scanning the IDRAC IP ranges
Graph.Dell.Wsman.PostDiscovery Tasks run after discovery
Graph.Dell.Wsman.Os.Create Read files from a source ISO and create a new, repackaged ISO that specifies

the location of a Kickstart file to use
Graph.Dell.Wsman.Os.Deploy Deploy an ISO image stored on a network share to to a Dell server
Graph.Dell.Wsman.ConfigServices Configure smiConfig.json
Graph.Dell.Wsman.Create.Repo Create firmware repo
Graph.Dell.Wsman.Download.CatalogDownload catalog
Graph.Dell.Wsman.Simple.Update.FirmwareUse firmware image to update single component’s firmware
Graph.Dell.Wsman.Update.FirmwareUse firmware repo to update all components’ firmware
Graph.Dell.Wsman.Import.SCP Import system configuration from a file located on remote share
Graph.Dell.Wsman.Export.SCP Export system configuration to a file on a remote share
Graph.Dell.Wsman.GetBios Get BIOS inventory
Graph.Dell.Wsman.ConfigureBios Configure BIOS settings
Graph.Dell.Wsman.GetTrapConfig Get server trap config
Graph.Dell.Wsman.Configure.Redfish.AlertConfigure redfish alert
Graph.Dell.Wsman.Reset.ComponentsReset components, such as bios, diag, drvpack, idrac, lcdata
Graph.Dell.Wsman.Powerthermal Set Power Cap Policy

Run Workflow Example

Run Discovery Workflow Example

curl -X POST \
-H 'Content-Type: application/json' \
-d '{ "name":"Graph.Dell.Wsman.Discovery",

"options": {
"defaults": {

"ranges": [
{

"startIp": "<startIP>",
"endIp": "<endIp>",
"credentials": {

"userName": "<user>",
"password": "<password."

}
}

],
"inventory": "true"

},
}

}' \
<server>/api/2.0/workflows

218 Chapter 1. Contents



RackHD Documentation, Release 2.0

Run ConfigureBios Workflow Example

curl -X POST \
-H 'Content-Type: application/json' \
-d '{ "name":"Graph.Dell.Wsman.ConfigureBios",

"options": {
"defaults": {

"attributes": [{
"name": "NumLock",
"value": "On"

}],
"rebootJobType": 1

},
}

}' \
<server>/api/2.0/nodes/<nodeId>/workflows

1.11 RackHD Web-UI

1.11.1 on-webui 1.0

Table of Contents

• on-webui 1.0

– How to Configure API Endpoint Settings

The latest version of the GUI is available publicly at http://rackhd.github.io/on-web-ui you can also download a zip of
the latest version.

This zip file can be extracted inside “on-http/static/http” to serve the UI from the MonoRail API server.

Source code for the web user interface is available at https://github.com/RackHD/
on-web-ui. There is also a README for learning how to about UI development.

1.11. RackHD Web-UI 219

http://rackhd.github.io/on-web-ui
https://github.com/RackHD/on-web-ui/archive/gh-pages.zip
https://github.com/RackHD/on-web-ui
https://github.com/RackHD/on-web-ui
https://github.com/RackHD/on-web-ui/blob/master/README.md


RackHD Documentation, Release 2.0

How to Configure API Endpoint Settings

1. Once the UI has loaded in your web browser.

2. Click the gear icon located at the top right of the page.

3. Enter the new URL for a running MonoRail API endpoint.

4. Click Apply.

1.12 Development Guide

1.12.1 Repositories

Table of Contents

• Repositories

– Applications

220 Chapter 1. Contents

http://rackhd.github.io/on-web-ui


RackHD Documentation, Release 2.0

– Libraries

– Supplemental Code

– Documentation

– Repositories Status

Applications

Ap-
pli-
ca-
tion

Repos-
itory

Description

on-
tftp

https://
github.
com/
RackHD/
on-tftp

Node.js application provided TFTP service integrated with the workflow engine. TFTP is the
common protocol used to initiate a PXE process, and on-tftp is tied into the workflow engine
to be able to dynamically provide responses based on the state of the workflow engine, and to
provide events to the workflow engine when servers request files via TFTP

on-
http

https://
github.
com/
RackHD/
on-http

Node.js application provided HTTP service integrated with the workflow engine. RackHD com-
monly uses iPXE as its initial bootloader, loading remaining files for PXE booting via HTTP and
using that communications path as a mechanism to control what a remote server will do when
rebooting. on-http also serves as the communication channel for the microkernel to support deep
hardware interrogation, firmware updates, and other actions that can only be invoked directly on
the hardware and not through an out of band management channel.

on-
syslog

https://
github.
com/
RackHD/
on-syslog

Syslog endpoint integrated to feed data to the workflow engine.

on-
taskgraph

https://
github.
com/
RackHD/
on-taskgraph

Node.js application providing the workflow engine. It provides functionality for running encap-
sulated jobs/units of work via graph-based control flow mechanisms.

on-
dhcp-
proxy

https://
github.
com/
RackHD/
on-dhcp-proxy

Node.js application providing DHCP proxy support in the workflow engine. The DHCP protocol
supports getting additional data specifically for the PXE process from a secondary service that
also responds on the same network as the DHCP server. The DHCP proxy service provides that
information, generated dynamically from the workflow engine.

on-
wss

https://
github.
com/
RackHD/
on-wss

Node.js application providing websocket update support from RackHD for UI interations

1.12. Development Guide 221

https://github.com/RackHD/on-tftp
https://github.com/RackHD/on-tftp
https://github.com/RackHD/on-tftp
https://github.com/RackHD/on-tftp
https://github.com/RackHD/on-tftp
https://github.com/RackHD/on-http
https://github.com/RackHD/on-http
https://github.com/RackHD/on-http
https://github.com/RackHD/on-http
https://github.com/RackHD/on-http
https://github.com/RackHD/on-syslog
https://github.com/RackHD/on-syslog
https://github.com/RackHD/on-syslog
https://github.com/RackHD/on-syslog
https://github.com/RackHD/on-syslog
https://github.com/RackHD/on-taskgraph
https://github.com/RackHD/on-taskgraph
https://github.com/RackHD/on-taskgraph
https://github.com/RackHD/on-taskgraph
https://github.com/RackHD/on-taskgraph
https://github.com/RackHD/on-dhcp-proxy
https://github.com/RackHD/on-dhcp-proxy
https://github.com/RackHD/on-dhcp-proxy
https://github.com/RackHD/on-dhcp-proxy
https://github.com/RackHD/on-dhcp-proxy
https://github.com/RackHD/on-wss
https://github.com/RackHD/on-wss
https://github.com/RackHD/on-wss
https://github.com/RackHD/on-wss
https://github.com/RackHD/on-wss


RackHD Documentation, Release 2.0

Libraries

Library Repository Description
core https://github.com/RackHD/

on-core
Core libraries in use across Node.js applications.

tasks https://github.com/RackHD/
on-tasks

Node.js task library for the workflow engine. Tasks are loaded
and run by taskgraphs as needed.

redfish-
client-node

https://github.com/RackHD/
redfish-client-node

Node.js client library for interacting with Redfish API endpoints.

Supplemental Code

Library Repository Description
Web user
interface

https://github.com/
RackHD/on-web-ui

Initial web interfaces to some of the APIs - multiple interfaces embedded
into a single project.

statsd https://github.com/
RackHD/on-statsd

A local statsD implementation that makes it easy to deploy on a local
machine for aggregating and summarizing application metrics.

Image-
Builder

https://github.
com/RackHD/
on-imagebuilder

Tooling to build RackHD binary files, including the microkernel docker
images and specific iPXE builds

SKU
Packs

https://github.com/
RackHD/on-skupack

Example SKU pack definitions and example code

Build
Config

https://github.
com/RackHD/
on-build-config

(deprecated) Scripts and tooling to support CI of RackHD

Documentation

Repository Description
https://github.com/RackHD/
docs

The RackHD documentation as published to http://rackhd.readthedocs.org/en/
latest/.

Repositories Status

The following badges in the tables may take a while to load.

Repository Travis-Ci Build Code Climate Code Coverage
on-core
on-dhcp-proxy
on-http
on-imagebuilder N/A N/A
on-statsd
on-syslog
on-taskgraph
on-tasks
on-tftp
on-web-ui N/A
on-wss N/A

222 Chapter 1. Contents

https://github.com/RackHD/on-core
https://github.com/RackHD/on-core
https://github.com/RackHD/on-tasks
https://github.com/RackHD/on-tasks
https://github.com/RackHD/redfish-client-node
https://github.com/RackHD/redfish-client-node
https://github.com/RackHD/on-web-ui
https://github.com/RackHD/on-web-ui
https://github.com/RackHD/on-statsd
https://github.com/RackHD/on-statsd
https://github.com/RackHD/on-imagebuilder
https://github.com/RackHD/on-imagebuilder
https://github.com/RackHD/on-imagebuilder
https://github.com/RackHD/on-skupack
https://github.com/RackHD/on-skupack
https://github.com/RackHD/on-build-config
https://github.com/RackHD/on-build-config
https://github.com/RackHD/on-build-config
https://github.com/RackHD/docs
https://github.com/RackHD/docs
http://rackhd.readthedocs.org/en/latest/
http://rackhd.readthedocs.org/en/latest/
https://travis-ci.org/RackHD/on-core
https://codeclimate.com/github/RackHD/on-core
https://coveralls.io/r/RackHD/on-core?branch=master
https://travis-ci.org/RackHD/on-dhcp-proxy
https://codeclimate.com/github/RackHD/on-dhcp-proxy
https://coveralls.io/r/RackHD/on-dhcp-proxy?branch=master
https://travis-ci.org/RackHD/on-http
https://codeclimate.com/github/RackHD/on-http
https://coveralls.io/r/RackHD/on-http?branch=master
https://travis-ci.org/RackHD/on-imagebuilder
https://travis-ci.org/RackHD/on-statsd
https://codeclimate.com/github/RackHD/on-statsd
https://coveralls.io/r/RackHD/on-statsd?branch=master
https://travis-ci.org/RackHD/on-syslog
https://codeclimate.com/github/RackHD/on-syslog
https://coveralls.io/r/RackHD/on-syslog?branch=master
https://travis-ci.org/RackHD/on-taskgraph
https://codeclimate.com/github/RackHD/on-taskgraph
https://coveralls.io/r/RackHD/on-taskgraph?branch=master
https://travis-ci.org/RackHD/on-tasks
https://codeclimate.com/github/RackHD/on-tasks
https://coveralls.io/r/RackHD/on-tasks?branch=master
https://travis-ci.org/RackHD/on-tftp
https://codeclimate.com/github/RackHD/on-tftp
https://coveralls.io/r/RackHD/on-tftp?branch=master
https://travis-ci.org/RackHD/on-web-ui
https://codeclimate.com/github/RackHD/on-web-ui
https://travis-ci.org/RackHD/on-wss
https://codeclimate.com/github/RackHD/on-wss


RackHD Documentation, Release 2.0

1.12.2 API Versioning Conventions

Table of Contents

• API Versioning Conventions

– Referencing API Versions in URIs

– Versioning Resources

– API Version Guidelines

All current APIs are prefixed with:

/api/current

RackHD extenders can supplement the central API (common) with versioned customer-specific APIs in parallel.

Referencing API Versions in URIs

Use the following convention when referencing API version:

/api/current/...
/api/1.1/...
/api/2.0/...

The second /[. . . ]/ block in the URI is the version number. The “current” or “latest” placeholder points to the latest
version of the API in the system.

Multiple API versions can be added in parallel. Use N, N-1, N-2, etc. as the naming convention.

All API versioning information should be conveyed in HTTP headers.

Versioning Resources

A translation and validation chain is used to support versioned “types” for URI resources from the RackHD system.
The chain flow is:

BUSINESS OBJECT — TRANSLATE — VALIDATE

Data objects should be versioned in line with the API version.

API Version Guidelines

Use the following guide lines when determining if a new API version is needed.

The following changes require a new API version:

• changing the semantic meaning of a URI route

• removing a URI route

The following changes do not require a new API version:

• adding an entirely new URI route

• changing the query parameters (pagination, filtering, etc.) accepted by the URI route

1.12. Development Guide 223



RackHD Documentation, Release 2.0

• changing the return values on error conditions

• changing the data structure for a resource at a given URI

1.12.3 Naming Conventions

Table of Contents

• Naming Conventions

– Workflows

– Microkernel docker image

Workflows

We use the following conventions when creating workflow-related JSON documents:

Tasks

For task definitions, the only convention is for values in the “injectableName” field. We tend to prefix all names with
“Task.” and then add some categorization to classify what functionality the task adds.

Examples:

Task.Os.Install.CentOS
Task.Os.Install.Ubuntu
Task.Obm.Node.PowerOff
Task.Obm.Node.PowerOn

Graphs

For graph definitions, conventions are pretty much the same as tasks, except “injectableName” is prefixed by “Graph.”.

Examples:

Graph.Arista.Zerotouch.vEOS
Graph.Arista.Zerotouch.EOS

Microkernel docker image

Image Names

We tend to prefix docker images with micro_ along with some information about which RancherOS the docker image
was built off and information about what is contained within the docker image. Images are suffixed with docker.tar.xz
because they are xzed tar archives contain docker image.

Examples:

micro_1.2.0_flashupdt.docker.tar.xz
micro_1.2.0_brocade.docker.tar.xz
micro_1.2.0_all_binaries.docker.tar.xz

Image Files

When adding scripts and binaries to docker image, we typically put them in /opt within subdirectories based on vendor.

224 Chapter 1. Contents



RackHD Documentation, Release 2.0

Examples:

/opt/MegaRAID/MegaCli/MegaCli64
/opt/MegaRAID/StorCli/storcli64
/opt/mpt/mpt3fusion/sas3flash

If you want to add binaries or scripts and reference them by name rather than their absolute paths, then add them to
/usr/local/bin or any other directory in the default PATH for bash.

File Paths

Our HTTP server will serve docker images from /opt/monorail/static/http. It is recommended that you create subdi-
rectories within this directory for further organization.

Examples:

/opt/monorail/static/http/teamA/intel_flashing/micro_1.2.0_flashupdt.docker.tar.xz
/opt/monorail/static/http/teamA/generic/micro_1.2.0_all_binaries.docker.tar.xz

These file paths can then be referenced in workflows starting from the base path of /opt/monorail/static/http, so the
above paths are referenced for download as:

teamA/intel_flashing/micro_1.2.0_flashupdt.docker.tar.xz
teamA/generic/micro_1.2.0_all_binaries.docker.tar.xz

1.12.4 Debugging Guide

Table of Contents

• Debugging Guide

– Discovery with a Default Workflow

– Default discovery workflow

– Footprint Benchmark Test

* How It Works

* Prerequisites

* How to Run

– Logged warnings FAQ

Discovery with a Default Workflow

Sequence Diagram for the Discovery Workflow

1.12. Development Guide 225



RackHD Documentation, Release 2.0

226 Chapter 1. Contents



RackHD Documentation, Release 2.0

The diagram is made with WebSequenceDiagrams.

To see if the DHCP request was received by ISC DHCP, look in /var/log/syslog of the RackHD host. grep DHCP
/var/log/syslog works reasonably well - you’re looking for a sequence like this:

Jan 8 15:43:43 rackhd-demo dhclient: DHCPDISCOVER on eth0 to 255.255.255.255 port 67
→˓interval 3 (xid=0x5b3b9260)
Jan 8 15:43:43 rackhd-demo dhclient: DHCPREQUEST of 10.0.2.15 on eth0 to 255.255.255.
→˓255 port 67 (xid=0x60923b5b)
Jan 8 15:43:43 rackhd-demo dhclient: DHCPOFFER of 10.0.2.15 from 10.0.2.2
Jan 8 15:43:43 rackhd-demo dhclient: DHCPACK of 10.0.2.15 from 10.0.2.2

You should also see the DHCP proxy return the bootfile. In the DHCP-proxy logs, look for lines with
DHCP.messageHandler:

S 2016-01-08T19:31:43.268Z [on-dhcp-proxy] [DHCP.messageHandler] [Server] Unknown
→˓node 08:00:27:f3:9f:2e. Sending down default bootfile.

And immediately thereafter, you should see the server request the file from TFTP:

S 2016-01-08T19:31:43.352Z [on-tftp] [Tftp.Server] [Server] tftp: 67.300 monorail.ipxe

Default discovery workflow

title Default Discovery Workflow
Server->RackHD: DHCP from PXE(nic or BIOS)
RackHD->Server: ISC DHCP response with IP
note over RackHD:

If the node is already "known",
it will only respond if there's an active workflow
that's been invoked related to the node

end note
RackHD->Server: DHCP-proxy response with bootfile
Server->RackHD: Request to download bootfile via TFTP
RackHD->Server: TFTP sends requested file (monorail.ipxe)
note over Server:

Server loads monorail.ipxe
and initiates on bootloader

end note
Server->RackHD: IPXE script requests what to do from RackHD (http)
note over RackHD:

RackHD looks up IP address of HTTP request from iPXE script to find the node via
→˓its mac-address.

1) If the node is already "known", it will only respond if there's an active
→˓workflow

that's been invoked related to the node.
2) If the node isn't known, it will create a workflow (default is the workflow

→˓'Graph.Sku.Discovery')
and respond with an iPXE script to initiate that.

end note
RackHD->Server: iPXE script (what RackHD calls a Profile) (via http)
note over Server:

iPXE script with RancherOS vmlinuz,
initrd and cloud-config (http)

end note
Server->RackHD: iPXE requests static file - the RancherOS vmlinuz kernel

(continues on next page)

1.12. Development Guide 227

https://www.websequencediagrams.com


RackHD Documentation, Release 2.0

(continued from previous page)

RackHD->Server: RancherOS vmlinuz (http)
Server->RackHD: iPXE requests static file - RacherOS initrd
RackHD->Server: RancherOS initrd (http)
note over Server:

Server loads the vmlinuz and initrd,
and transfers control (boots RancherOS)

end note
Server->RackHD: RancherOS requests cloud-config - RacherOS cloud-config
RackHD->Server: RancherOS cloud-config(http)
Server->RackHD: RancherOS loads discovery docker image from Server
note over Server:

the discovery container is set to request
and launch a NodeJS task runnner

end note
Server->RackHD: requests the bootstrap.js template
RackHD->Server: bootstrap.js filled out with values specific to the node based on a
→˓lookup
note over Server:

runs node bootstrap.js
end note
Server->RackHD: bootstrap asks for tasks (what should I do?)
RackHD->Server: data packet of tasks (via http)
note over Server:

Discovery Workflow
passes down tasks to
interrogate hardware

end note
loop for each Task from RackHD

Server->RackHD: output of task
end
note over RackHD

Task output stored as catalogs in RackHD related to the node.
If RackHD is configured with SKU definitions,
it processes these catalogs to determine the SKU.
If there's a SKU specific workflow defined, control is continued to that.
The discovery workflow will create an enclosure node based on the catalog data.
The discovery workflow will also create IPMI pollers for the node,
if relevent information can be found in the catalog.
The discovery workflow will also generate tag for the node,
based on user-defined tagging rules.

end note
Server->RackHD: bootstrap asks for tasks (what should I do?)
RackHD->Server: Nothing more, thanks - please reboot (via http)

Footprint Benchmark Test

Footprint benchmark test collects system data when running poller (15min), node discovery and CentOS bootstrap test
cases. It can also run independently from any test cases, allowing users to measure footprint about any operations they
carry out. The data includes CPU, memory, disk and network consumption of every process in RackHD, as well as
RabbitMQ and MongoDB processes. The result is presented as HTML files. For more details, please check the wiki
page proposal-footprint-benchmarks.

228 Chapter 1. Contents

https://github.com/RackHD/RackHD/wiki/proposal-footprint-benchmarks


RackHD Documentation, Release 2.0

How It Works

Footprint benchmark test is integrated into RackHD test framework. It can be executed as long as the machine running
the test can access the RackHD API and manipulate the RackHD machine via SSH.

Prerequisites

• The machine running RackHD can use apt-get to install packages, which means it must have accessible
sources.list.

• In RackHD, compute nodes have been discovered, and pollers are running.

• No external AMQP queue with the name “graph.finished” is subscribed to RackHD, since the benchmark test
uses this queue.

• Make sure the AMQP port in RackHD machine can be accessed by the test machine. If RackHD is not running
in Vagrant, user can tunnel the port using the following command in RackHD machine.

sudo socat -d -d TCP4-LISTEN:55672,reuseaddr,fork TCP4:localhost:5672

How to Run

Clone the test repo from GitHub

git clone https://github.com/RackHD/RackHD.git

Enter test directory and install required modules in virtual env

cd RackHD/test
virtualenv .venv

(continues on next page)

1.12. Development Guide 229



RackHD Documentation, Release 2.0

(continued from previous page)

source .venv/bin/activate
pip install -r requirements.txt

Configure RackHD related parameters in config.ini

vim config/config.ini

Run the test. The first time user kicks off the test, he/she will be asked to input sudoer’s username and password of
localhost.

python benchmark.py

If user would like to run only one of the three benchmark cases, the following command can be used

python benchmark.py --group=poller|discovery|bootstrap

Run footprint data collection independently

python benchmark.py --start|stop

To get the directory of the latest log file

python benchmark.py --getdir

After the test finishes, the result is in ~/benchmark, and arranged by the timestamp and case name. Please use the
command below to open Chrome

chrome.exe --user-data-dir="C:/Chrome dev session" --allow-file-access-from-files

In the “report” directory of the case, drag the summary.html into Chrome. The footprint data and graph will be shown
in the page, and user can also compare it with previous runs by selecting another case from the drop-down menu in
the page.

Logged warnings FAQ

Question:

I’m seeing this warning appear in the logs but it all seems to be working. What’s happening?

W 2016-01-29T21:06:22.756Z [on-tftp] [Tftp.Server] [Server] Tftp error
-> /lib/server.js:57

file: monorail.ipxe
remoteAddress: 172.31.128.5
remotePort: 2070
W 2016-01-29T21:12:43.783Z [on-tftp] [Tftp.Server] [Server] Tftp error
-> /lib/server.js:57

file: monorail.ipxe
remoteAddress: 172.31.128.5
remotePort: 2070

Answer:

What I learned (so I may be wrong here, but think it’s accurate) is that during the boot loading/PXE process the NICs
will attempt to interact with TFTP in such a way that the first request almost always fails - it’s how the C code in those
nics is negotiating for talking with TFTP. So you’ll frequently see those errors in the logs, and then immediately also
see the same file downloading on the second request from the nic (or host) doing the bootloading.

230 Chapter 1. Contents



RackHD Documentation, Release 2.0

Question:

When we’re boostraping a node (or running a workflow against a node in general) with a NUC, we sometimes see these
extended messages on the server’s console reading Link. . . . . . down, and depending on the network configuration can
see failures for the node to bootstrap and respond to PXE.

Answer:

The link down is a pernicious problem for PXE booting in general, and a part of the game that’s buried into how
switches react and bring up and down ports. We’ve generally encouraged settings like “portfast” which more agres-
sively bring up links that are going down and coming back up with a power cycle. In the NUCs you’re using, you’ll
see that extensively, but it happens on all networks. If you have spanning-tree enabled, some things like that - it’ll
expand the time. There’s only so much we can do to work around it, but fundamentally it means that while the relevant
computer things things are “UP and OK” and has started a TFTP/PXE boot process, the switch hasn’t brought the NIC
link up. So we added an explicit sleep in there in the monorail.ipxe to extend ‘the time to let networks converge so
that the process has a better chance of succeeding.

1.12.5 Logging in RackHD

Table of Contents

• Logging in RackHD

– Log Levels

– Setting up and using Logging

– Deprecation

Log Levels

We have a common set of logging levels within RackHD, used across the projects and applications. The levels are
defined in the on-core library

The conventions for using the levels are:

critical Used for logging terminal failures that are crashing the system, for information to support post-failure debug-
ging. Errors logged as critical are expected to be terminal and will likely result in the application crashing or
failing to start.

Errors logged at a critical level should be actionable in that the tracebacks or logged errors should allow res-
olution of the error with a code or configuration update. These errors are generally considered failures of the
program to anticipate corner conditions or failure modes.

error Logging errors that may (or will) result in the application behaving in an unexpected fashion. Asser-
tion/precondition errors are appropriate here, as well as any error that would generate an “unknown” error
and be exposed via a 500 response (i.e. an undefined error) in an HTTP response code. The results of these
errors are not expected to be terminal to the operation of the application.

Errors logged at an error level should be actionable in that the tracebacks or logged errors should allow res-
olution of the error with a code or configuration update. These errors are generally considered failures of the
program to anticipate corner conditions or failure modes.

warning An expected error condition or fault in inputs to which the application responds correctly, but the end-user
action may not be what they intended. Incorrect passwords, or actions that are not allowed because they conflict
with existing configurations are appropriate for this level.

1.12. Development Guide 231

https://github.com/RackHD/on-core/blob/master/lib/common/constants.js#L36


RackHD Documentation, Release 2.0

Errors logged at an warning level may not be actionable, but should be informative in the logs to indicate what
the failure was. Errors where secure information are part of the response may include more information in logs
than in a response ot the end user for security considerations.

info Informational data about current execution that would be relevant to regular use of the application. Not generally
considered “errors” at the log level of info, this level should be used judiciously with the idea that regular
operation of the application is likely to run with log filtering set to allow info logging.

Information logged at the info is not expected to be actionable, but may be expected to be used in external
systems collecting the log information for regular operational metrics.

debug Informational data about current execution that would be relevant to debugging or detailed analysis of the
application, typically for a programmer, or to generate logs for post-analysis by a someone familiar with the
code in the project. Information is not considered “errors” at the log level of debug.

Information logged at the debug is not expected to be actionable, but may be expected to be used in external
systems collecting the log information for debugging or post-analysis metrics.

Setting up and using Logging

Using our dependency injection libraries, it’s typical to inject Logger and then use it within appropriate methods.
Within factory methods for services or modules, Logger is initialized with the module name, which annotates the
logs with information about where the logs were coming from.

An example of this:

di.annotate(someFactory, new di.Inject('Logger'))

function someFactory (Logger) {
var logger = Logger.initialize(someFactory);

}

with logger being used later within the relevant scope for logging. For example:

function foo(bar, baz) {
logger.debug("Another request was made with ", {id: baz});

}

The definitions for the methods and what the code does can be found in the logger module.

Deprecation

There is a special function in our logging common library for including in methods you’re attempting to deprecate:

logger.deprecate("This shouldn't be used any longer", 2)

Which will generate log output at the error for assistance in identifying methods, APIs, or subsystems that are still in
use but in the process of being depracted for replacement.

1.12.6 AMQP Message Bus Conventions

Table of Contents

• AMQP Message Bus Conventions

232 Chapter 1. Contents

https://github.com/RackHD/on-core/blob/master/lib/common/logger.js


RackHD Documentation, Release 2.0

– Configuration

– Events

– HTTP

– DHCP

– TFTP

– Logging

– task-graph-runner

– Scheduler

– Task

At the top level, we utilize 9 exchanges for passing various messages between key services and processes:

Configuration

RPC channel for making dynamic system configuration changes

Routing keys:

methods.set
methods.get

Events

One to many broadcast of events applicable to workflows and reactions (where poller/telemetry events will be placed
in the future as well)

Routing keys:

tftp.success.[nodeid]
tftp.failure.[nodeid]
http.response.[nodeid]
dhcp.bind.success.[nodeid]
task.finished.[taskid]
graph.started.[graphid]
graph.finished.[graphid]
sku.assigned.[nodeid]

HTTP

Routing keys:

http.response

(uncertain - duplicate of http.response.[nodeid]?)

DHCP

RPC channel for interrogating the DHCP service

1.12. Development Guide 233



RackHD Documentation, Release 2.0

Routing keys:

methods.lookupIpLease
methods.ipInRange
methods.peekLeaseTable
methods.removeLease
methods.removeLeaseByIp
methods.pinMac
methods.unpinMac
methods.pinIp
methods.unpinIp

TFTP

(nothing defined)

Logging

Routing keys:

critical
error
warning
info
debug

task-graph-runner

RPC mechanism for communicating with process running workflows

Routing keys:

methods.getTaskGraphLibrary
methods.getTaskLibrary
methods.getActiveTaskGraph
methods.getActiveTaskGraphs
methods.defineTaskGraph
methods.defineTask
methods.runTaskGraph
methods.cancelTaskGraph
methods.pauseTaskGraph
methods.resumeTaskGraph
methods.getTaskGraphProperties

Scheduler

RPC mechanism for scheduling tasks within a workflow to run

schedule

234 Chapter 1. Contents



RackHD Documentation, Release 2.0

Task

RPC mechanism for tasks to interrogate or interact with workflows (task-graphs)

run.[taskid]
cancel.[taskid]
methods.requestProfile.[id] (right now, nodeId)
methods.requestProperties.[id] (right now, nodeId)
methods.requestCommands.[id] (right now, nodeId)
methods.respondCommands.[id] (right now, nodeId)
methods.getBootProfile.[nodeid]
methods.activeTaskExists.[nodeId]
methods.requestPollerCache
ipmi.command.[command].[graphid] (right now, command is 'power', 'sel' or 'sdr')
ipmi.command.[command].result.[graphid] (right now, command is 'power', 'sel' or 'sdr
→˓')
run.snmp.command.[graphid]
snmp.command.result.[graphid]
poller.alert.[graphid]

1.12.7 Messenger Design Notes

Table of Contents

• Messenger Design Notes

– Publish (Exchange, Topic, Data) -> Promise (Success)

– Subscribe (Exchange, Topic, Callback) -> Promise (Subscription)

– Request (Exchange, Topic, Data) -> Promise (Response)

– Object Marshaling

– Object Validation

– Additional Information

These are design notes from the original creation of the messenger service used by all applications in RackHD through
the core libraries

The code to match these designs is available at https://github.com/RackHD/on-core/blob/master/lib/common/
messenger.js

Messenger provides functionality to our core code for communicating via AMQP using RabbitMQ.

There are 3 main operations that are provided for communication including the following:

• Publish (Exchange, Topic, Data) -> Promise (Success)

• Subscribe (Exchange, Topic, Callback) - Promise (Subscription)

• Request (Exchange, Topic, Data) -> Promise (Response)

Within these operations we provide additional functionality for object marshaling, object validation, and tracing of
requests.

1.12. Development Guide 235

https://github.com/RackHD/on-core/blob/master/lib/common/messenger.js
https://github.com/RackHD/on-core/blob/master/lib/common/messenger.js


RackHD Documentation, Release 2.0

Publish (Exchange, Topic, Data) -> Promise (Success)

Publish provides the mechanism to send data to a particular RabbitMQ exchange & topic.

Subscribe (Exchange, Topic, Callback) -> Promise (Subscription)

Subscribe provides the mechanism to listen for publishes or requests which are provided through the callback argu-
ment. The subscribe callback receives data in the form of the following:

function (data, message) {
/*
* data - The published message data.

* message - A Message object with additional data and features.

*/
}

To respond to a message we support the Promise deferred syntax.

Success

message.resolve({ hello: 'world' });

Failure

message.reject(new Error('Some Error'));

Request (Exchange, Topic, Data) -> Promise (Response)

Request is a wrapper around the Publish/Subscribe mechanism which will first create a reply queue for a response and
then publish the data to the requested exchange & topic. It’s assumed that a Subscriber using the Subscribe API will
respond to the message or a timeout will occur. The reply queue is automatically generated and disposed of at the end
of the request so no subscriptions need to be managed by the consumer.

Object Marshaling

While plain JavaScript objects can be sent over the messenger it also supports marshaling of Serializable types in
On-Core. Objects which implement the Serializable interface can be marshaled over AMQP by using a constructor
initialization convention and by registering their type with the messenger. When sending a Serializable object over
AMQP the messenger uses the registered type to decorate the AMQP message in a way in which a receiver can create
a new copy of the object using it’s typed constructor. Subscribers who receive constructed types will have access to
them directly through their data value in the subscriber callback.

Object Validation

On publish and on subscription callback the messenger will also validate Serializable objects using the Validatable
base class. Validation is provided via JSON Schemas which are attached to the sub-classed Validatable objects. If
an object to be marshaled is Validatable the messenger will validate the object prior to publish or subscribe callback.
Future versions of the messenger will support subscription and request type definitions which will allow consumers to
identify what types of objects they expect to be notified about which will give the messenger an additional means of
ensuring communications are handled correctly. Some example schemas are listed below: MAC Address

236 Chapter 1. Contents



RackHD Documentation, Release 2.0

{
id: 'MacAddress',
type: 'object',
properties: {

value: {
type: 'string',
pattern: '^([0-9a-fA-F][0-9a-fA-F]:){5}([0-9a-fA-F][0-9a-fA-F])$'

}
},
required: [ 'value' ]

}

IP Address

{
id: 'IpAddress',
type: 'object',
properties: {

value: {
type: 'string',
format: 'ipv4'

}
},
required: [ 'value' ]

}

Lookup Model (via On-Http)

{
id: 'Serializables.V1.Lookup',
type: 'object',
properties: {

node: {
type: 'string'

},
ipAddress: {

type: 'string',
format: 'ipv4'

},
macAddress: {

type: 'string',
pattern: '^([0-9A-Fa-f]{2}[:-]){5}([0-9A-Fa-f]{2})$'

}
},
required: [ 'macAddress' ]

}

Additional Information

With the primary goal of the messenger being to simplify usage patterns for the consumer not all of the features have
been highlighted. Below is a quick recap of the high level features.

• Publish, Subscribe, and Request/Response Patterns.

• Optional Object Marshaling.

• Optional Object Validation via JSON Schema.

1.12. Development Guide 237



RackHD Documentation, Release 2.0

• Publish & Subscribe use their own connections to improve latency in request/response patterns.

• Automatic creation of exchanges on startup.

• Automatic subscription management for Request/Response patterns.

• Automatic Request correlation and context marshaling.

1.12.8 Contributing Code Changes

Table of Contents

• Contributing Code Changes

– Guidelines for merging pull requests

– Getting commit privileges

– Quality gates for the pull requests

Guidelines for merging pull requests

For code changes, we currently use a guideline of lazy consensus with two positive reviews with at least one of those
reviews being one of the core maintainers and no negative votes. And of course, the gates for the pull requests must
pass as well (unit tests, etc).

If you put a review up, please be explicit with a vote (+1, -1, or +/-0) so we can distinguish questions asking for
information or background from reviews implying that the relevant change should not be merged. Likewise if you put
up a change for review as a pull request, a -1 review comment isn’t a reflection on you as a person, instead is a request
to make a modification before that pull request should be merged.

For those with commit privileges

See https://github.com/RackHD/RackHD/wiki/Merge-Guidelines for more informal guidelines and rules of thumb to
follow when making merge decisions.

Getting commit privileges

The core committer team will grant contributor rights to the RackHD project using a lazy consensus mechanism. Any
of the maintainers/core contributors can nominate someone to have those privileges, and with two +1 votes and no
negative votes, the team will grant commit privileges.

The core team will also be responsible for removing commit privileges when appropriate - for example for malicious
merge behavior or just inactivity over an extended period of time.

Quality gates for the pull requests

There are three quality gates to ensure the pull requests quality, Hound for code style check, Travis CI for unit-test and
coveralls, Jenkins for the combination test including unit-test and smoke test. When a pull request is created, all tests
will run automatically, and the test results can be found in the merge status field of each pull request page. Running
unit/functional tests locally prior to creating a pull request is strongly encouraged. This would hopefully minimize
the amount errors seen during PR submission and lessen a dependency on Travis/Jenkins to test code before it’s really
ready to be submitted.

Hound

238 Chapter 1. Contents

http://www.apache.org/foundation/glossary.html#LazyConsensus
https://github.com/RackHD/RackHD/wiki/Merge-Guidelines
http://www.apache.org/foundation/glossary.html#LazyConsensus
https://houndci.com/
https://travis-ci.org/
https://jenkins.io/


RackHD Documentation, Release 2.0

Hound works with jshint and comments on style violations in pull requests. Configuration files .hound.yml and
.jshintrc have been created in each repository, so before creating a pull request, you can check code style locally
with jshint to find out style violations beforehand.

Travis CI

Travis CI runs the unit tests, and then does some potentially ancillary actions. The build specifics are detailed in the
.travis.yml file within each repository. For finding out basic errors before creating a pull request, you can run
unit test locally using npm test within each repository.

Concourse

RackHD uses Concourse CI to monitor and perform quality gate tests on all pull requests prior to merge. The gates
include running all the unit tests, running all dependent project unit tests with the code proposed from the pull request,
running an integration “smoke test” to verify basic end to end functionality and commenting on the details of test
case failure. Concourse can also take instructions from pull request comments or description in order to handle more
complex test scenarios. Instructions can be written in the pull request description or comments.

All pull requests will need to be labeled with the “run-test” label before the quality gate tests will run. This label needs
to be set by a RackHD Commit.

The following table show all the Jenkins Instructions and usage:

Instruction Description Detailed Usage
depends on: pr1_url depends on:
pr2_url . . .

Trigger one Jenkins test that using
the commits of all interdependent
pull requests.

RackHD is a multi repository
project, so there are times one
new feature needs changes on
two or more repositories. In such
situation neither Concourse test for
single pull request can pass. This
command is order to solve this
problem.
Recommended usage: for interde-
pendent pull requests, first create
pull request one by one, but do not
label any PRs with “run-test”. When
creating the last pull request include
the depend statements in the de-
scription:

depends on: pr1_url
depends on: pr2_url
...

Then set the “run-test” label only on
the pull request that includes the de-
pends on instruction.
The interdependent test result will
be written back to all interdependent
pull requests. The unit test error log
will be commented on each related
pull request, the functional test er-
ror log will only be commented on
the main pull request, the one with
the “depends on . . . ” instruction.

1.12. Development Guide 239

http://jshint.com/


RackHD Documentation, Release 2.0

1.13 Hands-On vLab

1.13.1 RackHD vLab Overview

The lab architecture is broken down into the areas. The nodes in the black area represent a real example of a single
instance of RackHD managing multiple physical nodes. The two infrastructure Docker Containers are connected via
the blue network. This blue network is required for the vLab infrastructure and is external to RackHD environment.

The RackHD portion is configured in the black area which lives within Ubuntu. In the black area, you will see 3
Docker Containers. One is running RackHD and the other two are running a simulation package called InfraSIM
to simulate different types of servers. The nested Docker Containers are running Ubuntu 16.04 and are networked
through the orange network. RackHD will be installed and run in the “RackHD server” Docker. Its first NIC (network
adapter) is connected to blue external network, while its second NIC will be the DHCP server port of the “orange
network”. The “orange network” is managed by RackHD. In the real world, RackHD would manage the physical
servers via an equivalent management network. The “vNode-1, vNode-2” are Docker Containers which “InfraSIM”
will be deployed. (InfraSIM is an open source project which simulates servers, switches, and intelligent PDUs today.
The vNode Docker Container’s secondary NIC are connected to the “orange network”, which retrieve DHCP IP from
RackHD server. )

1.13.2 RackHD Virtual Stack Environment Setup

Table of Contents

• RackHD Virtual Stack Environment Setup

– Setup a Docker Based RackHD Environment

* Network Topology Overview

* Install RackHD with docker-compose

– Setup a Virtualized Infrastructure Environment

240 Chapter 1. Contents



RackHD Documentation, Release 2.0

* Infrasim Overview

* Start-up Docker based vStack

Setup a Docker Based RackHD Environment

There are various ways to install RackHD, including install from debian package, VMWare OVA, Docker or Vagrant
Box.In this Lab, you can experience the steps of “install from docker”. For more detail about installation please refer
to Installation.

Network Topology Overview

The Docker Compose file will download the latest released versions of the RackHD Services from the RackHD Dock-
erHub. It will create two docker bridge networks to run the services. The rackhd_admin network will be used to
connect the services together and to access the RackHD APIs. The rackhd_southbound network will be used by
RackHD to connect to the virtual nodes. The Docker Compose setup also enables port forwarding that allows your
localhost to access the RackHD instance:

• localhost:9090 redirects to rackhd_admin:9090 for access to the REST API

• localhost:9093 redirects to rackhd_admin:8443 for secure access to the REST API

Install RackHD with docker-compose

There are four ways to install RackHD:

• From Docker

• From Debian

• From NPM package

• From source code

For vLab specific, we use docker to install RackHD services, for other installation methods please refer to summary
in this section.

1.13. Hands-On vLab 241



RackHD Documentation, Release 2.0

cd ~/src/RackHD/example/rackhd
sudo docker-compose up -d

# Check RackHD services are running
sudo docker-compose ps

# Sample response:
#
# Name Command State
→˓ Ports
# -----------------------------------------------------------------------------------
→˓---------------------------
# rackhd_dhcp-proxy_1 node /RackHD/on-dhcp-proxy ... Up
# rackhd_dhcp_1 /docker-entrypoint.sh Up
# rackhd_files_1 /docker-entrypoint.sh Up
# rackhd_http_1 node /RackHD/on-http/index.js Up
# rackhd_mongo_1 docker-entrypoint.sh mongod Up 27017/
→˓tcp, 0.0.0.0:9090->9090/tcp
# rackhd_rabbitmq_1 docker-entrypoint.sh rabbi ... Up
# rackhd_syslog_1 node /RackHD/on-syslog/ind ... Up
# rackhd_taskgraph_1 node /RackHD/on-taskgraph/ ... Up
# rackhd_tftp_1 node /RackHD/on-tftp/index.js Up

The command sudo docker-compose logs will output the logs from all the running RackHD services. Ad-
ditionally, you can stop the services with the command sudo docker-compose stop, or stop and delete the
services with sudo docker-compose down.

Setup a Virtualized Infrastructure Environment

Infrasim Overview

InfraSIM is a hardware simulator environment that is used in this lab to simulate physical servers with a BMC.
The diagram above shows the relationship of physical server to virtual server in InfraSIM so the user gets a general
understanding of the virtual node. A physical server is made up of two sub-systems, one for data and the other
for management. The data sub-system consists of the host CPU, memory, storage, and IO. This is where OS and
Applications run. The management subsystem consists of the BMC and this provides the Out-Of-Band management to

242 Chapter 1. Contents



RackHD Documentation, Release 2.0

remotely control the physical server. Like a physical server, the virtual server has the equivalent sub-systems. However,
in the virtualized environment, the data sub-system is accomplished with a virtual machine and the management sub-
system is accomplished with “qemu” and “ipmi_sim” applications running in a VM. We refer to the data sub-system
as “Virtual Computer” and the management sub-system as “Virtual BMC”. See diagram above.

As shown, there are 2 network adapters in the InfraSIM docker container. The first one is connected to the external
network and the second one is connected to RackHD’s DHCP network. For the “server CPU” it simulates, you can
use VNC to interact with its console on first NIC port (xxx.xxx.xxx.xxx). However, there should be a bridge (br0) so
that InfraSIM can run normally

Start-up Docker based vStack

cd ~/src/RackHD/example/infrasim
sudo docker-compose up -d

# Sample response
# 610b9262a5ed infrasim_infrasim1 ... 22/tcp, 80/tcp infrasim_infrasim1_1
# 7b8944444da7 infrasim_infrasim0 ... 22/tcp, 80/tcp infrasim_infrasim0_1

For example, we choose infrasim_infrasim0_1, use following command to retrieve its IP Address.

sudo docker exec -it infrasim_infrasim0_1 ifconfig br0

# Sample response
# br0 Link encap:Ethernet HWaddr 02:42:ac:1f:80:03
# inet addr:172.31.128.112 Bcast:172.31.143.255 Mask:255.255.240.0
# UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
# RX packets:2280942 errors:0 dropped:0 overruns:0 frame:0
# TX packets:2263193 errors:0 dropped:0 overruns:0 carrier:0
# collisions:0 txqueuelen:0
# RX bytes:207752197 (207.7 MB) TX bytes:265129274 (265.1 MB)

1.13. Hands-On vLab 243



RackHD Documentation, Release 2.0

Note: If br0 is not available, use sudo docker-compose restart to restart the vNodes.

Here 172.31.128.112 is infrasim_infrasim0_1’s BMC IP Address.

In order to connect to vNode from “UltraVNC Viewer” vnc_forward script should be executed.

./vnc_forward

# Sample response
# ...
# Setting VNC port 28109 for IP 172.31.128.109
# Setting VNC port 28110 for IP 172.31.128.110
# Setting VNC port 28111 for IP 172.31.128.111
# Setting VNC port 28112 for IP 172.31.128.112
# Setting VNC port 28113 for IP 172.31.128.113
# Setting VNC port 28114 for IP 172.31.128.114
# ...

1.13.3 RackHD try-out with Web UI

1.13.4 RackHD Operation with Restful API

Table of Contents

• RackHD Operation with Restful API

– RackHD API 2.0

* Overview and Data Model

* Common used RackHD 2.0 APIs

– Redfish API

* Overview and Data Model

* Common used RackHD Redfish APIs

RackHD API 2.0

Overview and Data Model

In the previous modules, you had the opportunity to experiment with some RackHD APIs. In this section you will
learn about two different RESTful endpoints in RackHD and experiment with them. RackHD is designed to provide
a REST (Representational state transfer) architecture to provide a RESTful API. RackHD currently has two RESTful
interfaces: a Redfish API and native REST API 2.0. The RESTful API 2.0 provides unique features that are not
provided in Redfish API.

Common used RackHD 2.0 APIs

REST API (v2.0) – Get workflow history (Node-ID is obtained by the curl localhost:9090/api/2.0/
nodes | jq . API.)

244 Chapter 1. Contents



RackHD Documentation, Release 2.0

curl localhost:9090/api/current/nodes/<Node-ID>/workflows | jq .

# Example Response
# ...
# "72d726cf-baf1-45fb-a0de-1278cdae72af": {
# "taskEndTime": "2018-03-02T12:25:07.716Z",
# "taskStartTime": "2018-03-02T12:24:58.788Z",
# "terminalOnStates": [
# "timeout",
# "cancelled",
# "failed"
# ],
# "state": "succeeded",
# "ignoreFailure": true,
# "waitingOn": {
# "b0cb0eb6-d783-4be2-af92-bdf170a79857": "succeeded"
# },
# ...

REST API (v2.0) – Get active workflow In this example, the return is blank ([]), which means no workflow is actively
running on this node.

curl localhost:9090/api/current/nodes/<Node-ID>/workflows?active=true | jq .

# Example Response
# []

REST API (v2.0) – Show RackHD configurations Show the RackHD configurations, by running the following
command.

curl localhost:9090/api/2.0/config | jq .

REST API (v2.0) – lookup table Dump the IP address in the lookup table (where RackHD maintains the nodes IP),
by running the following command

curl localhost:9090/api/current/lookups | jq .

REST API (v2.0) – Built-in workflow Show the name of all built-in workflow

curl localhost:9090/api/2.0/workflows/graphs | jq '.' | grep injectableName | grep
→˓"Graph.*" | grep -v "Task"

REST API (v2.0) – Issue a workflow Post a workflow to a specific node by running the following command. In the
following example, to post a workflow to Reset a Node, the Node-ID is obtained by the curl localhost:9090/
api/2.0/nodes | jq . API.

curl -X POST -H 'Content-Type: application/json' localhost:9090/api/current/nodes/
→˓<Node-ID>/workflows?name=Graph.Reset.Node | jq '.'

SKU Pack

sudo apt-get install build-essential devscripts debhelper

# clone the on-skupack repo. checkout to a released version.
cd /tmp
git clone https://github.com/RackHD/on-skupack.git
git reset --hard release/1.3.0

(continues on next page)

1.13. Hands-On vLab 245



RackHD Documentation, Release 2.0

(continued from previous page)

# Take Dell R630 as example:
cd ~/tmp/on-skupack
./build-package.bash dell-r630 vlab

# In tarballs folder, you will find sku pack package : dell-r630_vlab.tar.gz
cd ~/tmp/on-skupack
ls tarballs/

#Register this SKU Pack:
cd ~/tmp/on-skupack
curl -X POST --data-binary @tarballs/dell-r630_vlab.tar.gz localhost:9090/api/current/
→˓skus/pack | jq '.'

# Find the SKU id from below API:
curl localhost:9090/api/current/skus | jq '.'

# Find the nodes matched this SKU Pack (e.g. if you have a dell-r630 vNode, it will
→˓be associated with the dell-r630 skupack you just registered)
curl localhost:9090/api/current/skus/<sku-id>/nodes | jq '.'

What is the benefit of SKU-Pack ? SKU Packs allow you to assign specific workflows for specific SKUs. For example,
before discovery, we can associate a “Dell firmware upgrade” workflow to Dell R630 SKU. Then when a new Dell
R630 server being discovered, it will be automatically matched to dell-r630 sku, then the “firmware upgrade” workflow
will run.

Redfish API

Overview and Data Model

The Redfish API deals with resources which are expressed based on an OData or JSON schema. Resources are
accessed through the usual HTTP operations: GET, PUT, POST, etc., or a set of Actions that go beyond what CRUD
HTTP operations can perform. An example of such an action is performing a system reset. API clients can use the
schema to discover the semantics of the resource properties. The specification makes reference to three main category
of objects:

• Systems – server, CPU, memory, devices, etc.

• Managers – BMC, Enclosure Manager or similar

• Chassis – racks, enclosures, blades, etc.

Common used RackHD Redfish APIs

List the Chassis that is managed by RackHD (equivalent to the enclosure node in REST API 2.0), by running the
following command.

curl localhost:9090/redfish/v1/Chassis | jq .

List the System being managed by RackHD (equivalent to compute node in API 2.0)

curl localhost:9090/redfish/v1/Systems | jq .

List the SEL Log (System-ID is obtained in above step)

246 Chapter 1. Contents



RackHD Documentation, Release 2.0

curl localhost:9090/redfish/v1/systems/<System-ID>/LogServices/Sel | jq .

Show the CPU processor information

curl localhost:9090/redfish/v1/Systems/<System-ID>/Processors/0 | jq .

Redfish API helper

curl localhost:9090/redfish/v1 | jq .

1.13.5 Discovery and Catalog Server Nodes

Table of Contents

• Discovery and Catalog Server Nodes

– Clear Database

– Discovery

– Catalogs

– Pollers

* OBM Setting

* Retrieve Pollers

In this module, you will learn about RackHD’s discovery, catalog and poller functionality using the simulated nodes
that were setup in previous labs. * Discovery: RackHD can dynamically discover a node that attempts to PXE boot
on the network that RackHD is monitoring. * Catalog: perform an inventory of the discovered nodes and capture the
nodes’ attributes and capabilities. * Poller: periodically capture nodes’ telemetry data from the hardware interfaces.

Clear Database

When a node attempts to PXE boot on the network managed by RackHD, RackHD will respond to the PXE boot. If
RackHD is not aware of the server, it will serve up a microkernel image that will catalog the node and record it with
RackHD. If the node has been already discovered (if a node’s MAC has been recorded in RackHD’s database), this
vNode will not pxe boot RackHD’s microkernel again. In the previous steps, we have already brought up the virtual
servers, the virtual nodes have already been discovered by RackHD. In this session, we will stop RackHD and clean
the database so RackHD is forced to discover those nodes again.

1. stop RackHD

sudo docker ps

You will find rackhd_mongo_1 container is running

1.13. Hands-On vLab 247



RackHD Documentation, Release 2.0

2. clean data base.

# clean database
sudo docker exec -it rackhd_mongo_1 mongo rackhd
db.dropDatabase()
# CTRL+D to exit
# restart RackHD
cd src/RackHD/example/rackhd/
sudo docker-compose restart

Discovery

1. restart InfraSIM (equivalent to reboot a physical server)

cd src/RackHD/example/infrasim/
sudo docker-compose restart

2. Execute “Ultra-VNC” to view the PXE progress to boot microkernel (as the snapshot)

248 Chapter 1. Contents



RackHD Documentation, Release 2.0

3. The vNode console will hold at this step for 1 min, to catalog the node data on this server. Once the micro-
kernel completes, the vNode will be reboot. This reboot will signify the discovery workflow has completed.

4. Use RackHD API to discover the Node

curl localhost:9090/api/current/nodes

The output is in json format, but it is not friendly to human to read, so please append “jq” tool to make it pretty

curl localhost:9090/api/current/nodes | jq .

1.13. Hands-On vLab 249



RackHD Documentation, Release 2.0

Now you can see one or more enclosure nodes "type": "enclosure" and computer name "type":
"compute"

Catalogs

What’s “Catalog”

• Catalogs are free form data structures with information about the nodes.

• Pluggable mechanism for adding new catalogers for additional data

• JSON documents stored in MongoDB

Example of Catalog Sources

• DMI from dmidecode

• OHAI aggregate of different stats in more friendly JSON format

• IPMI typically ipmitool via KCS channel Lan info

• User info

• FRU, SEL, SDR, MC Info

250 Chapter 1. Contents



RackHD Documentation, Release 2.0

• lsscsi,lspci,lshw

• Vendor specific AMI

• Storcli

• RACADM

• LLDP

1. List all ‘compute’ type nodes being discovered on rackhd-server SSH console. ( you will focus on ‘‘compute‘‘
type nodes in remaining of this Lab.) . append ‘‘?type=compute‘‘ as a “query string”.

curl localhost:9090/api/current/nodes?type=compute | jq '.'

2. Get one of the “compute” node ID demote it as a variable named ‘‘node_id‘‘ in the following session. Note:
the node_id varies from different nodes, and even for the same node, the id will be changed if RackHD’s database
being cleaned and node re-discovered.

3. There’re various sources where the catalogs data were retrieved from. you can take a glance of them by
below command.

curl localhost:9090/api/current/nodes/<node_id>/catalogs/ | jq '.' | grep source

4. Choose one of the sources you are interested in and then append to the command. For example, this example
uses ‘‘ipmi-fru‘‘.

curl localhost:9090/api/current/nodes/<node_id>/catalogs/ipmi-fru | jq '.'
# or "driveId" as example
curl localhost:9090/api/current/nodes/<node_id>/catalogs/driveId | jq '.'

Pollers

What’s Poller

• The “pollers” API provides functionality for periodic collection of status information from hardware devices
(monitoring) IPMI, redfish and SNMP data. (SNMP data is available for vSwtich, which is not included in this
vLab. while redfish pollers is neither included .)

• Regularly gather SNMP, IPMI primary mechanisms today

• Pollers capture from protocol, convert into events and provide live data stream via pub/sub mechanisms

Examples of Telemetry

• Switches Switch CPU, Memory

• Port status

• Port utilization

• Arbitrary MIB gathering capable

• PDU Socket status

• Arbitrary MIB gathering capable

• IPMI Sensors (SDR)

• Power status

1.13. Hands-On vLab 251



RackHD Documentation, Release 2.0

OBM Setting

Before setting up the poller, please set “OBM Setting”. OBM is short for “Out-of-Band-Management” and typically
refers to the BMC interface on the server. To talk with BMC, RackHD needs to be configured with the BMC’s IP
and credentials then bind them with a <node_id>, so that IPMI communication between node and RackHD can be
established.

In RackHD refers to this as the “OBM Setting”.

1. For a <node_id>, retrieve the BMC IP address, from the catalogs among bmc source.

curl localhost:9090/api/current/nodes/<node_id>/catalogs/bmc | jq '.' | grep "IP
→˓Address"

2. Fill the BMC IP (it should be 172.31.128.xx , which DHCP from rackhd-server) into below command,
which will set an IPMI OBM setting on a node

curl -X PUT -H 'Content-Type: application/json' -d ' { "service": "ipmi-obm-service",
→˓"config": { "host": "<BMC-IP>", "user": "admin", "password": "admin" } }'
→˓localhost:9090/api/current/nodes/<node_id>/obm

3. Once the OBM credentials have been configured, RackHD can communicate with BMC in workflows (e.g.
power-cycle the BMC or retrieve poller data)

Retrieve Pollers

1. List the active pollers which default runs on background.

curl localhost:9090/api/current/pollers| jq '.'

In below example output:

• the id is the poller’s id. denote it as <poller_id> . you will refer to it very soon.

• the type means it’s an IPMI poller or SNMP poller etc.

• the pollInternal is the interval of how frequent RackHD “poll” that data. Time in milliseconds to wait
between polls.

• the node is the target node of the poller data comes from

• the command is what kind of IPMI command this poller is issued.

Below take sdr as example

{
"id": "5a7dc446170698010001c3c6",
"type": "ipmi",
"pollInterval": 60000,
"node": "/api/2.0/nodes/5a7dc446170698010001c3c6",
"config": {
"command": "selInformation"

},
"lastStarted": "2018-02-09T16:01:07.236Z",
"lastFinished": "2018-02-09T16:01:07.294Z",
"paused": false,
"failureCount": 0

}

252 Chapter 1. Contents



RackHD Documentation, Release 2.0

2. Show the poller data it captured

curl localhost:9090/api/current/pollers/<poller_id>/data | jq '.'

3. Change the interval of a poller

curl -X PATCH -H 'Content-Type: application/json' -d '{"pollInterval":15000}'
→˓localhost:9090/api/current/pollers/<poller_id>

Tips:

Do you remember the modification on /src/RackHD/example/rackhd/monorail/config.json as be-
low ? (in RackHD installation session)

"autoCreateObm": true,

The reason for doing this is to ensure the default ipmi pollers can run successfully, so RackHD will create a de-
fault BMC account during discovery step. This ensures the pollers can run smoothly at the beginning with correct
user/password. If the OBM settings are not set correctly and the pollers are started, the poller interval will become
very long, and the poller data cannot be shown immediately in this Lab.

1.13.6 Control Server Nodes through Workflow

Show the name of all built-in workflows

curl localhost:9090/api/2.0/workflows/graphs | jq '.' | grep injectableName | grep
→˓"Graph.*" | grep -v "Task"

# Example Response
# ...
# "injectableName": "Graph.InstallUbuntu",
# "injectableName": "Graph.InstallWindowsServer",
# "injectableName": "Graph.Catalog.Intel.Flashupdt",
# "injectableName": "Graph.McReset",
# "injectableName": "Graph.noop-example",
# "injectableName": "Graph.PDU.Discovery",
# "injectableName": "Graph.Persist.Poller.Data",
# "injectableName": "Graph.Service.Poller",
# "injectableName": "Graph.PowerOff.Node",
# "injectableName": "Graph.PowerOn.Node",
# "injectableName": "Graph.Quanta.storcli.Catalog",
# "injectableName": "Graph.rancherDiscovery",
# "injectableName": "Graph.Reboot.Node",
# "injectableName": "Graph.Redfish.Discovery",
# "injectableName": "Graph.Redfish.Ip.Range.Discovery",
# ...

Let’s try to reboot the server node use Graph.Reboot.Node workflow.

Before you post the reboot workflow, use VNC-Viewer to connect to server node first.

curl -X POST \
-H 'Content-Type: application/json' \
127.0.0.1:9090/api/current/nodes/<Node-ID>/workflows?name=Graph.Reboot.Node | jq

→˓'.'

Then you will see your server node’s restart process in VNC-Viewer.

1.13. Hands-On vLab 253



RackHD Documentation, Release 2.0

1.13.7 Unattended OS Installation

Table of Contents

• Unattended OS Installation

– Prerequisite

– Set Up OS Mirror

– Install OS with RackHD API

– Monitor Progress

– Login to OS

Prerequisite

Choose a vNode which type is ‘‘compute‘‘ and record the vNodes node-id, here we choose
‘‘5a7b407dc23ca50100984619‘‘ for example

curl localhost:9090/api/current/nodes?type=compute | jq '.' | grep \"id\"

Ensure its OBM setting is not blank

curl localhost:9090/api/current/nodes/<node-id>/obm | jq '.'

If the response comes back [], please follow OBM Setting, to add OBM setting.

Retrieve BMC IP Address using the host mac address above

curl 'localhost:9090/api/2.0/lookups?q=02:42:ac:1f:80:03' | jq .

254 Chapter 1. Contents



RackHD Documentation, Release 2.0

In this example, 172.31.128.100 is target vNode’s BMC IP Address

Set Up OS Mirror

To provision the OS to the node, RackHD can act as an OS mirror repository.

cd ~/src/RackHD/example/rackhd/files/mount/common
mkdir -p centos/7/os/x86_64/
sudo mount -o loop ~/iso/CentOS-7-x86_64-DVD-1708.iso centos/7/os/x86_64

CentOS-7-x86_64-DVD-1708.iso can download from Official site.

/files/mount/common is a volume which is mounted to rackhd/files docker container as a static file ser-
vice. After ISO file is mounted, we need to restart file service. (This is a docker’s potential bug which cannot sync
files mounted in the volume when container is running)

cd ~/src/RackHD/example/rackhd
sudo docker-compose restart

The OS mirror will be available on http://172.31.128.2:9090/common/centos/7/os/x86_64 from vNode’s perspective.

Install OS with RackHD API

Download Centos OS install payload example (more example of other OS.)

cd ~
wget https://raw.githubusercontent.com/RackHD/RackHD/master/example/samples/install_
→˓centos_7_payload_minimal.json

Edit the payload json with vim.

vim install_centos_7_payload_minimal.json

# Change the "repo" line to below.
"repo": "http://172.31.128.2:9090/common/centos/7/os/x86_64"

Install OS (using build-in InstallCentOS workflow)

curl -X POST -H 'Content-Type: application/json' -d @install_centos_7_payload_minimal.
→˓json localhost:9090/api/2.0/nodes/<nodeID>/workflows?name=Graph.InstallCentOS |
→˓jq .

1.13. Hands-On vLab 255

https://wiki.centos.org/Download
http://172.31.128.2:9090/common/centos/7/os/x86_64
https://github.com/RackHD/RackHD/tree/master/example/samples


RackHD Documentation, Release 2.0

Monitor Progress

Use UltraVNC on the desktop to view the OS installation

Use API to monitor the running workflow.

curl localhost:9090/api/current/nodes/<Node_ID>/workflows?active=true | jq .

You will see “_status”: “running”, for “graphName”: “Install CentOS”

256 Chapter 1. Contents



RackHD Documentation, Release 2.0

Note: If it quickly returns “[]”, it means the workflow failed immediately and it is most likely caused by OBM not
setting. (No OBM service assigned to this node.)

It will PXE boot from the Centos OS install image and progress screen will show up in about 5 mins, the entire
installation takes around 9 mins. You can move on the guide or revisit previous sessions, then go back after 4~5
minutes

Login to OS

Once the OS has been installed, you can try login the system via UltraVNC console. Installed OS default user-
name/password: root/RackHDRocks!

Moreover, in this lab, the minimal payload was used. You can specific more setting in the payload and RackHD will

1.13. Hands-On vLab 257



RackHD Documentation, Release 2.0

configure the OS for you, example: the user-creation, network configuration, disk partition . . . etc.

1.14 Customer Support

1.14.1 Frequent Asks

Tip: Q: How can I set obms automatically when node discovered in HP server?

A: There is a “autoCreateObm” property you can set to true in your config.json file. When the autoCreateObm
and arpCacheEnabled in opt/monorail/config.json are set to true, Discovery workflow will create a random
credential using ipmitool in the container inside RancherOS and get the MAC Address from catalog, and use
arp to lookup the IP of the specific server.

1.14.2 How TO

How to customize Default iPXE Boot Setting

Table of Contents

• How to customize Default iPXE Boot Setting

– Default iPXE Boot Customized OS Into RAM

– Customize iPXE Boot Profile

A compute server’s BIOS can be set to always PXE network boot using the BIOS boot order. The default RackHD
response when no workflow is operating is to do nothing - normally falling through to the next item in the BIOS boot
order. RackHD can also be configured with a default iPXE script to provide boot instructions when no workflow is
operational against the node.

Default iPXE Boot Customized OS Into RAM

To configure RackHD to provide a custom iPXE response to a node outside of a workflow running, such as booting
a customized kernel and initrd, you can do so by providing configuration to the Node resource in RackHD. This
functionality can be enabled by using a PATCH REST API call adding bootSettings to a node.

curl -X PATCH \
-H 'Content-Type: application/json' \
-d @boot.json \
<server>/api/current/nodes/<identifier>

A example of boot.json:

{
"bootSettings":{

"profile":"defaultboot.ipxe",
"options":{

"url":"http://172.31.128.1:9080/common",
(continues on next page)

258 Chapter 1. Contents



RackHD Documentation, Release 2.0

(continued from previous page)

"kernel":"vmlinuz-1.2.0-rancher",
"initrd":"initrd-1.2.0-rancher",
"bootargs":"console=tty0 console=ttyS0,115200n8"

}
}

}

For bootSettings, profile and options are MUST required:

Name Type Flags Description
profile String required Profile that will be rendered by RackHD and used by iPXE
options Object required Options in JSON format used to render variables in profile

A default iPXE profile defaultboot.ipxe is provided by RackHD, and its options includes url, kernel, initrd, bootargs

NameType Flags Description
url String re-

quired
Location Link of kernel and initrd, it could be accessed by http in node, the http service is
located in RackHD server or an external server which could be accessed by http proxy or after
setting NAT in RackHD. In RackHD server, the root location could be set by httpStaticRoot in
config.json or in SKU Pack’s config.json

ker-
nel

String re-
quired

Kernel to boot

ini-
trd

String re-
quired

Init ramdisk to boot with kernel

bootargsString re-
quired

Boot arguments of kernel

Customize iPXE Boot Profile

profile in bootSettings could be customized instead of defaultboot.ipxe. defaultboot.ipxe is provided by default,
and its options url, kernel, initrd, bootargs are aligned with the variables <%=url%> <%=kernel%> <%=initrd%>
<%=bootargs%> in defaultboot.ipxe, so if the profile is customized, the options also should be aligned with the
variables that will be rendered in customized iPXE profile just like defaultboot.ipxe

defaultboot.ipxe:

kernel <%=url%>/<%=kernel%>
initrd <%=url%>/<%=initrd%>
imgargs <%=kernel%> <%=bootargs%>
boot || prompt --key 0x197e --timeout 2000 Press F12 to investigate || exit shell

1.15 Contributing to RackHD

Table of Contents

• Contributing to RackHD

– Communicating with Other Users

1.15. Contributing to RackHD 259

https://github.com/RackHD/RackHD/blob/master/packer%2Fansible%2Froles%2Fmonorail%2Ffiles%2Fconfig.json


RackHD Documentation, Release 2.0

– Submitting Contributions

– Issues and Bugs

– Security Issues

– Understanding the Repositories

– Submitting Design Proposals

– Coding Guidelines

– Contributing to the Documentation

– Community Guidelines

We certainly welcome and encourage contributions in the form of issues and pull requests, but please read the guide-
lines in this document before you get involved.

Since our project is relatively new, we don’t yet have many hard and fast rules. As the project grows and more people
get involved, we will solidify and extend our guidelines as needed.

1.15.1 Communicating with Other Users

We maintain a mailing list at https://groups.google.com/d/forum/rackhd. You can visit the group through the web page
or subscribe directly by sending email to rackhd+subscribe@googlegroups.com.

We also have a slack channel at https://rackhd.slack.com to communicate online.

1.15.2 Submitting Contributions

To submit coding additions or changes for a repository, fork the repository and clone it locally. Then use a unique
branch to make commits and send pull requests.

Keep your pull requests limited to a single issue. Make sure that the description of the pull request is clear and
complete.

Run your changes against existing tests or create new ones if needed. Keep tests as simple as possible. At a minimum,
make sure your changes don’t break the existing project. For more information about contributing changes to RacKHD,
please see Contributing Code Changes

After receiving the pull request, our core committers will give you feedback on your work and may request that you
make further changes and resubmit the request. The core committers will handle all merges.

If you have questions about the disposition of a request, feel free to email one of our core committers.

Core Committer Team

• Michael.Hepfer@dell.com

• Andrew.Hou@dell.com

• Andre.Keedy@dell.com

• James.King@dell.com

• Lyne.Lin@dell.com

• Rahman.Muhammad@dell.com

260 Chapter 1. Contents

https://groups.google.com/d/forum/rackhd
mailto:rackhd+subscribe@googlegroups.com
https://rackhd.slack.com
mailto:Michael.Hepfer@dell.com
mailto:Andrew.Hou@dell.com
mailto:Andre.Keedy@dell.com
mailto:James.King@dell.com
mailto:Lyne.Lin@dell.com
mailto:Rahman.Muhammad@dell.com


RackHD Documentation, Release 2.0

• Jeanne.Ohren@dell.com

• Geoffrey.Reid@dell.com

• Stuart.Stanley@dell.com

• James.Turnquist@dell.com

Please direct general conversation about how to use RackHD or discussion about improvements and features to our
mailing list at rackhd@googlegroups.com

1.15.3 Issues and Bugs

Please use https://rackhd.atlassian.net/secure/RapidBoard.jspa?rapidView=5 to raise issues, ask questions, and report
bugs.

Search existing issues to ensure that you do report a topic that has already been covered. If you have new information
to share about an existing issue, add your information to the existing discussion.

When reporting problems, include the following information:

• Problem Description

• Steps to Reproduce

• Actual Results

• Expected Results

• Additional Information

1.15.4 Security Issues

If you discover a security issue, please report it in an email to rackhd@dell.com. Do not use the Issues section to
describe a security issue.

1.15.5 Understanding the Repositories

The https://github.com/rackhd/RackHD repository acts as a single source location to help you get or build all the pieces
to learn about, take advantage of, and contribute to RackHD.

A thorough understanding of the individual repositories is essential for contributing to the project. The repositories
are described in our documentation at Repositories.

1.15.6 Submitting Design Proposals

Significant feature and design proposals are expected to be proposed on the mailing list (rackhd@googlegroups.com, or
at https://groups.google.com/forum/#!forum/rackhd) for discussion. The Core Committer team reviews the proposals
to make sure architectural details are aligned, with a floating agenda updated on the RackHD Confluence page at https:
//rackhd.atlassian.net/wiki/spaces/RAC1/pages/9437198/Core+Commiter+Weekly+Interlock (formerly github wiki at
https://github.com/RackHD/RackHD/wiki/Core-Committer-Meeting). The meeting notes are posted to the google
groups mailing list.

Work by dedicated teams is scheduled within a broader RackHD Roadmap. External contributions are absolutely
welcome outside of planning exposed in the roadmap.

1.15. Contributing to RackHD 261

mailto:Jeanne.Ohren@dell.com
mailto:Geoffrey.Reid@dell.com
mailto:Stuart.Stanley@dell.com
mailto:James.Turnquist@dell.com
mailto:rackhd@googlegroups.com
https://rackhd.atlassian.net/secure/RapidBoard.jspa?rapidView=5
mailto:rackhd@dell.com
https://github.com/rackhd/RackHD
mailto:rackhd@googlegroups.com
https://groups.google.com/forum/#!forum/rackhd
https://rackhd.atlassian.net/wiki/spaces/RAC1/pages/9437198/Core+Commiter+Weekly+Interlock
https://rackhd.atlassian.net/wiki/spaces/RAC1/pages/9437198/Core+Commiter+Weekly+Interlock
https://github.com/RackHD/RackHD/wiki/Core-Committer-Meeting
https://github.com/RackHD/RackHD/wiki/roadmap


RackHD Documentation, Release 2.0

1.15.7 Coding Guidelines

Use the same coding style as the rest of the codebase. In general, write clean code and supply meaningful and
comprehensive code comments. For more detailed information about how we’ve set up our code, please see our
Development Guide.

1.15.8 Contributing to the Documentation

To contribute to our documentation, clone the RackHD/docs repository and submit commits and pull requests as is
done for the other repositories. When we merge your pull requests, your changes are automatically published to our
documentation site at http://rackhd.readthedocs.org/en/latest/.

1.15.9 Community Guidelines

This project adheres to the Open Code of Conduct. By participating, you are expected to honor this code. Our
community generally follows Apache voting guidelines and utilizes lazy consensus for logistical efforts.

RackHD is a Trademark of Dell EMC Corporation.

262 Chapter 1. Contents

https://github.com/RackHD/docs
http://rackhd.readthedocs.org/en/latest/
http://todogroup.org/opencodeofconduct/#RackHD/rackhd@emc.com
http://www.apache.org/foundation/voting.html
http://en.osswiki.info/concepts/lazy_consensus

	Contents
	RackHD Overview
	Technical Inside
	RackHD Support Matrix
	Quick Start Guide
	Running RackHD
	RackHD API, Data Model, Feature
	Redfish API, Data Model, Feature
	Server Workflow Guide
	Switch Workflow Guide
	Extended Services
	RackHD Web-UI
	Development Guide
	Hands-On vLab
	Customer Support
	Contributing to RackHD


